IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i3d10.1007_s00362-017-0969-6.html
   My bibliography  Save this article

A new general class of discrete bivariate distributions constructed by using the likelihood ratio

Author

Listed:
  • Hyunju Lee

    (Ewha Womans University)

  • Ji Hwan Cha

    (Ewha Womans University)

Abstract

In statistics, stochastic orders formalize such a concept that one random variable is bigger than another. In this paper, we develop a new class of discrete bivariate distributions based on a stochastic order defined by the likelihood ratio. We derive general formula for the joint distributions belonging to the class. It will be seen that, from the proposed class, specific families of distributions can be efficiently generated just by specifying the ‘baseline seed distributions’. An important feature of the proposed discrete bivariate model is that, unlike other discrete bivariate models already proposed in the literature such as the well-known and most popular bivariate Poisson distribution by Holgate, it can model both positive and negative dependence. A number of new families of discrete bivariate distributions are generated from the proposed class. Furthermore, the generated bivariate distributions are applied to analyze real data sets and the results are compared with those obtained from some conventional models.

Suggested Citation

  • Hyunju Lee & Ji Hwan Cha, 2020. "A new general class of discrete bivariate distributions constructed by using the likelihood ratio," Statistical Papers, Springer, vol. 61(3), pages 923-944, June.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-017-0969-6
    DOI: 10.1007/s00362-017-0969-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-017-0969-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-017-0969-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshe Shaked, 1984. "Extensions of the Freund Distribution with Applications in Reliability Theory," Operations Research, INFORMS, vol. 32(4), pages 917-925, August.
    2. Yuen, Kam C. & Guo, Junyi & Wu, Xueyuan, 2006. "On the first time of ruin in the bivariate compound Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 298-308, April.
    3. Arjun Gupta & Johanna Orozco-Castañeda & Daya Nagar, 2011. "Non-central bivariate beta distribution," Statistical Papers, Springer, vol. 52(1), pages 139-152, February.
    4. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    5. Wu, Xueyuan & Yuen, Kam C., 2003. "A discrete-time risk model with interaction between classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 117-133, August.
    6. D. Al-Mutairi & M. Ghitany & D. Kundu, 2011. "A new bivariate distribution with weighted exponential marginals and its multivariate generalization," Statistical Papers, Springer, vol. 52(4), pages 921-936, November.
    7. Sun, Kai & Basu, Asit P., 1995. "A characterization of a bivariate geometric distribution," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 307-311, June.
    8. Lee, Hyunju & Cha, Ji Hwan, 2014. "On construction of general classes of bivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 151-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Young Yoo & Ji Hwan Cha, 2024. "General classes of bivariate distributions for modeling data with common observations," Statistical Papers, Springer, vol. 65(8), pages 5219-5238, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Young Yoo & Ji Hwan Cha, 2024. "General classes of bivariate distributions for modeling data with common observations," Statistical Papers, Springer, vol. 65(8), pages 5219-5238, October.
    2. Debasis Kundu, 2020. "On a General Class of Discrete Bivariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 270-304, November.
    3. Hyunju Lee & Ji Hwan Cha, 2021. "On a multivariate IFR and positively dependent lifetime model induced by multiple shot-noise processes," Statistical Papers, Springer, vol. 62(2), pages 561-590, April.
    4. Li, Haijun, 2003. "Association of multivariate phase-type distributions, with applications to shock models," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 381-392, October.
    5. Wang, Guojing & Yuen, Kam C., 2005. "On a correlated aggregate claims model with thinning-dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 456-468, June.
    6. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    7. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    8. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    9. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    10. Anita Behme & Philipp Lukas Strietzel, 2021. "A $$2~{\times }~2$$ 2 × 2 random switching model and its dual risk model," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 27-64, October.
    11. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    12. Bai, Xiaodong & Song, Lixin, 2011. "The asymptotic estimate for the sum of two correlated classes of discounted aggregate claims with heavy tails," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1891-1898.
    13. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
    14. Dang, Lanfen & Zhu, Ning & Zhang, Haiming, 2009. "Survival probability for a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 491-496, June.
    15. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    16. Lee, Hyunju & Cha, Ji Hwan, 2015. "Construction of two new general classes of bivariate distributions based on stochastic orders," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 75-85.
    17. Susanne Trick & Constantin A. Rothkopf & Frank Jäkel, 2023. "Parameter estimation for a bivariate beta distribution with arbitrary beta marginals and positive correlation," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 163-180, August.
    18. Anastasiadis, Simon & Chukova, Stefanka, 2012. "Multivariate insurance models: An overview," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 222-227.
    19. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    20. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2009. "Sufficient reduction in multivariate surveillance," Research Reports 2009:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-017-0969-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.