IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v70y2016icp245-258.html
   My bibliography  Save this article

Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence

Author

Listed:
  • Bi, Junna
  • Liang, Zhibin
  • Xu, Fangjun

Abstract

In this paper, we study the optimal investment–reinsurance problems in a risk model with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component. Under the criterion of mean–variance, two cases are considered: One is the optimal mean–variance problem with bankruptcy prohibition, i.e., the wealth process of the insurer is not allowed to be below zero at any time, which is solved by standard martingale approach, and the closed form solutions are derived; The other is the optimal mean–variance problem without bankruptcy prohibition, which is discussed by a very different method—stochastic linear–quadratic control theory, and the explicit expressions of the optimal results are obtained either. In the end, a numerical example is given to illustrate the results and compare the values in the two cases.

Suggested Citation

  • Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
  • Handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:245-258
    DOI: 10.1016/j.insmatheco.2016.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716301044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lihua Bai & Huayue Zhang, 2008. "Dynamic mean-variance problem with constrained risk control for the insurers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 181-205, August.
    2. Yuen, Kam C. & Guo, Junyi & Wu, Xueyuan, 2006. "On the first time of ruin in the bivariate compound Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 298-308, April.
    3. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    4. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    5. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    8. Junna Bi & Junyi Guo, 2013. "Optimal Mean-Variance Problem with Constrained Controls in a Jump-Diffusion Financial Market for an Insurer," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 252-275, April.
    9. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    10. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    11. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    12. Liang, Xue & Wang, Guojing, 2012. "On a reduced form credit risk model with common shock and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 567-575.
    13. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    14. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    15. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    16. Yuen, Kam C. & Guo, Junyi & Wu, Xueyuan, 2002. "On a correlated aggregate claims model with Poisson and Erlang risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 205-214, October.
    17. de Lourdes Centeno, Maria, 2005. "Dependent risks and excess of loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 229-238, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Bauerle & Gregor Leimcke, 2021. "Bayesian optimal investment and reinsurance with dependent financial and insurance risks," Papers 2103.05777, arXiv.org.
    2. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    3. De-Lei Sheng & Linfeng Shi & Danping Li & Yanping Zhao, 2022. "Manage Pension Deficit with Heterogeneous Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1119-1141, June.
    4. Xiaomin Shi & Zuo Quan Xu, 2024. "Mean-variance portfolio selection in jump-diffusion model under no-shorting constraint: A viscosity solution approach," Papers 2406.03709, arXiv.org.
    5. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    6. Wang, Hao & Wang, Rongming & Wei, Jiaqin, 2019. "Time-consistent investment-proportional reinsurance strategy with random coefficients for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 104-114.
    7. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    8. Guerra, M. & de Moura, A.B., 2021. "Reinsurance of multiple risks with generic dependence structures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 547-571.
    9. Sun, Jingyun & Yao, Haixiang & Kang, Zhilin, 2019. "Robust optimal investment–reinsurance strategies for an insurer with multiple dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 157-170.
    10. Yingxu Tian & Zhongyang Sun & Junyi Guo, 2022. "Optimal Mean-Variance Investment-Reinsurance Strategy for a Dependent Risk Model with Ornstein-Uhlenbeck Process," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1169-1191, June.
    11. Yingxu Tian & Zhongyang Sun, 2018. "Mean-Variance Portfolio Selection in a Jump-Diffusion Financial Market with Common Shock Dependence," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    12. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    13. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    14. Qiang Zhang & Qianqian Cui, 2024. "Robust Investment and Proportional Reinsurance Strategy with Delay and Jumps in a Stochastic Stackelberg Differential Game," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-34, December.
    15. Chen, Shumin & Liu, Yanchu & Weng, Chengguo, 2019. "Dynamic risk-sharing game and reinsurance contract design," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 216-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    2. Junna Bi & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal mean–variance investment/reinsurance with common shock in a regime-switching market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 109-135, August.
    3. Yingxu Tian & Zhongyang Sun, 2018. "Mean-Variance Portfolio Selection in a Jump-Diffusion Financial Market with Common Shock Dependence," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    4. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    5. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    6. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    7. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    8. Zhou, Jieming & Yang, Xiangqun & Guo, Junyi, 2017. "Portfolio selection and risk control for an insurer in the Lévy market under mean–variance criterion," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 139-149.
    9. Bi, Junna & Cai, Jun, 2019. "Optimal investment–reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 1-14.
    10. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
    11. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    12. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    13. Wang, Hao & Wang, Rongming & Wei, Jiaqin, 2019. "Time-consistent investment-proportional reinsurance strategy with random coefficients for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 104-114.
    14. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    15. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    16. Yingxu Tian & Zhongyang Sun & Junyi Guo, 2022. "Optimal Mean-Variance Investment-Reinsurance Strategy for a Dependent Risk Model with Ornstein-Uhlenbeck Process," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1169-1191, June.
    17. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    18. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    19. Lihua Bai & Huayue Zhang, 2008. "Dynamic mean-variance problem with constrained risk control for the insurers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 181-205, August.
    20. Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:245-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.