IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i2p409-429.html
   My bibliography  Save this article

A generalized skew two-piece skew-elliptical distribution

Author

Listed:
  • Mahdi Salehi
  • Ahad Jamalizadeh
  • Mahdi Doostparast

Abstract

We present a new generalized family of skew two-piece skew-elliptical (GSTPSE) models and derive some its statistical properties. It is shown that the new family of distribution may be written as a mixture of generalized skew elliptical distributions. Also, a new representation theorem for a special case of GSTPSE-distribution is given. Next, we will focus on t kernel density and prove that it is a scale mixture of the generalized skew two-piece skew normal distributions. An explicit expression for the central moments as well as a recurrence relations for its cumulative distribution function and density are obtained. Since, this special case is a uni-/bimodal distribution, a sufficient condition for each cases is given. A real data set on heights of Australian females athletes is analysed. Finally, some concluding remarks and open problems are discussed. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Mahdi Salehi & Ahad Jamalizadeh & Mahdi Doostparast, 2014. "A generalized skew two-piece skew-elliptical distribution," Statistical Papers, Springer, vol. 55(2), pages 409-429, May.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:2:p:409-429
    DOI: 10.1007/s00362-012-0485-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0485-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0485-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    2. Jamalizadeh, A. & Khosravi, M. & Balakrishnan, N., 2009. "Recurrence relations for distributions of a skew-t and a linear combination of order statistics from a bivariate-t," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 847-852, February.
    3. Jamalizadeh, A. & Mehrali, Y. & Balakrishnan, N., 2009. "Recurrence relations for bivariate t and extended skew-t distributions and an application to order statistics from bivariate t," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4018-4027, October.
    4. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    5. Álvarez Alvarado, Marcos Tulio, 2003. "¿Existe una alternativa al capitalismo?," Observatorio de la Economía Latinoamericana, Servicios Académicos Intercontinentales SL. Hasta 31/12/2022, issue 16, November.
    6. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    7. Jamalizadeh, A. & Balakrishnan, N. & Salehi, Mehdi, 2010. "Order statistics and linear combination of order statistics arising from a bivariate selection normal distribution," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 445-451, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdi Salehi & Mahdi Doostparast, 2015. "Expressions for moments of order statistics and records from the skew-normal distribution in terms of multivariate normal orthant probabilities," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 547-568, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Arellano-Valle & Ahad Jamalizadeh & H. Mahmoodian & N. Balakrishnan, 2014. "$$L$$ L -statistics from multivariate unified skew-elliptical distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(4), pages 559-583, May.
    2. Roohollah Roozegar & Ahad Jamalizadeh & Mehdi Amiri & Tsung-I Lin, 2018. "On the exact distribution of order statistics arising from a doubly truncated bivariate elliptical distribution," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 99-114, April.
    3. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    4. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Jamalizadeh, A. & Balakrishnan, N., 2009. "Prediction in a trivariate normal distribution via a linear combination of order statistics," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2289-2296, November.
    6. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    7. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    8. Ryo Kinoshita, 2015. "Asset allocation under higher moments with the GARCH filter," Empirical Economics, Springer, vol. 49(1), pages 235-254, August.
    9. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    10. Yangxin Huang & Tao Lu, 2017. "Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features," Computational Statistics, Springer, vol. 32(1), pages 179-196, March.
    11. Ali Genç, 2012. "Distribution of linear functions from ordered bivariate log-normal distribution," Statistical Papers, Springer, vol. 53(4), pages 865-874, November.
    12. Jamalizadeh, A. & Balakrishnan, N. & Salehi, Mehdi, 2010. "Order statistics and linear combination of order statistics arising from a bivariate selection normal distribution," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 445-451, March.
    13. Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.
    14. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    15. Jamalizadeh, A. & Mehrali, Y. & Balakrishnan, N., 2009. "Recurrence relations for bivariate t and extended skew-t distributions and an application to order statistics from bivariate t," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4018-4027, October.
    16. Marcel, Bräutigam & Marie, Kratz, 2018. "On the Dependence between Quantiles and Dispersion Estimators," ESSEC Working Papers WP1807, ESSEC Research Center, ESSEC Business School.
    17. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    18. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    19. Madadi, Mohsen & Khalilpoor, Parisa & Jamalizadeh, Ahad, 2015. "Regression mean residual life of a system with three dependent components with normal lifetimes," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 182-191.
    20. Mehdi Amiri & Ahad Jamalizadeh & Mina Towhidi, 2015. "Inference and further probabilistic properties of the $$ SUN_{n,2}$$ S U N n , 2 -distribution," Statistical Papers, Springer, vol. 56(4), pages 1071-1098, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:2:p:409-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.