IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i21p2289-2296.html
   My bibliography  Save this article

Prediction in a trivariate normal distribution via a linear combination of order statistics

Author

Listed:
  • Jamalizadeh, A.
  • Balakrishnan, N.

Abstract

In this paper, by considering a trivariate normal distribution, we derive the exact joint distribution of one variable and a linear combination of order statistics from the other two variables. We show that this joint distribution is a mixture of unified bivariate skew-normal distributions. This mixture form enables us to predict the variable based on a linear combination of order statistics from the other two variables. We finally illustrate the usefulness of these results by using a real-life data.

Suggested Citation

  • Jamalizadeh, A. & Balakrishnan, N., 2009. "Prediction in a trivariate normal distribution via a linear combination of order statistics," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2289-2296, November.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:21:p:2289-2296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00291-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2008. "On the exact distribution of the maximum of absolutely continuous dependent random variables," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 27-35, January.
    2. Jamalizadeh, A. & Khosravi, M. & Balakrishnan, N., 2009. "Recurrence relations for distributions of a skew-t and a linear combination of order statistics from a bivariate-t," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 847-852, February.
    3. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2007. "On the exact distribution of linear combinations of order statistics from dependent random variables," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1876-1894, November.
    4. Barry Arnold & Robert Beaver & A. Azzalini & N. Balakrishnan & A. Bhaumik & D. Dey & C. Cuadras & J. Sarabia & Barry Arnold & Robert Beaver, 2002. "Skewed multivariate models related to hidden truncation and/or selective reporting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(1), pages 7-54, June.
    5. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    6. Liseo, Brunero & Loperfido, Nicola, 2003. "A Bayesian interpretation of the multivariate skew-normal distribution," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 395-401, February.
    7. Basu, A. P. & Ghosh, J. K., 1978. "Identifiability of the multinormal and other distributions under competing risks model," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 413-429, September.
    8. Jamalizadeh, A. & Mehrali, Y. & Balakrishnan, N., 2009. "Recurrence relations for bivariate t and extended skew-t distributions and an application to order statistics from bivariate t," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4018-4027, October.
    9. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    10. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    11. Nicola Loperfido, 2008. "Modeling maxima of longitudinal contralateral observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 370-380, August.
    12. Balakrishnan, N., 1993. "Multivariate normal distribution and multivariate order statistics induced by ordering linear combinations," Statistics & Probability Letters, Elsevier, vol. 17(5), pages 343-350, August.
    13. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    14. Loperfido, Nicola, 2008. "A note on skew-elliptical distributions and linear functions of order statistics," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3184-3186, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamalizadeh, A. & Balakrishnan, N. & Salehi, Mehdi, 2010. "Order statistics and linear combination of order statistics arising from a bivariate selection normal distribution," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 445-451, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    2. Jamalizadeh, A. & Mehrali, Y. & Balakrishnan, N., 2009. "Recurrence relations for bivariate t and extended skew-t distributions and an application to order statistics from bivariate t," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4018-4027, October.
    3. Jamalizadeh, A. & Balakrishnan, N. & Salehi, Mehdi, 2010. "Order statistics and linear combination of order statistics arising from a bivariate selection normal distribution," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 445-451, March.
    4. R. Arellano-Valle & Ahad Jamalizadeh & H. Mahmoodian & N. Balakrishnan, 2014. "$$L$$ L -statistics from multivariate unified skew-elliptical distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(4), pages 559-583, May.
    5. Lui, Kung-Jong & Chang, Kuang-Chao, 2009. "Corrigendum to: "Testing homogeneity of risk difference in stratified randomized trials with noncompliance" [Comput. Statist. Data Anal. 53 (2008) 209-221]," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1529-1529, February.
    6. Roohollah Roozegar & Ahad Jamalizadeh & Mehdi Amiri & Tsung-I Lin, 2018. "On the exact distribution of order statistics arising from a doubly truncated bivariate elliptical distribution," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 99-114, April.
    7. Ali Genç, 2012. "Distribution of linear functions from ordered bivariate log-normal distribution," Statistical Papers, Springer, vol. 53(4), pages 865-874, November.
    8. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    9. Ayyub Sheikhi & Yaser Mehrali & Mahbanoo Tata, 2013. "On the exact joint distribution of a linear combination of order statistics and their concomitants in an exchangeable multivariate normal distribution," Statistical Papers, Springer, vol. 54(2), pages 325-332, May.
    10. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    11. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    12. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    14. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    15. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    16. Madadi, Mohsen & Khalilpoor, Parisa & Jamalizadeh, Ahad, 2015. "Regression mean residual life of a system with three dependent components with normal lifetimes," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 182-191.
    17. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    18. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Prates, Marcos O., 2012. "Multivariate mixture modeling using skew-normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 126-142, January.
    19. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    20. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:21:p:2289-2296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.