IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121004830.html
   My bibliography  Save this article

How COVID-19 has affected stock market persistence? Evidence from the G7’s

Author

Listed:
  • Bentes, Sónia R.

Abstract

This paper examines how COVID-19 pandemic has affected volatility persistence in the G7’s stock markets. Based on daily data we divided the whole sample into two sub-samples according to its breakpoints and found that they occurred right after the declaration of COVID-19 pandemic by the World Health Organization — WHO (2020). This approach allows us to assess the main differences between these two distinct phases. Thus, while the first sub-period is relatively calm, the second one, which coincides with the pandemic outbreak, shows higher levels of volatility. Considering this, we rely on GARCH-type models to assess the degree of persistence of volatility and to evaluate how it has evolved across sub-samples. Our results show that the FIGARCH(1,d,1) is the best model to describe the data and that the degree of persistence is very different from the first to the second sub-sample. Thus, while the pre-pandemic period exhibits lower levels of persistence it has greatly increased with the COVID-19 outbreak. In particular, S&P 500 and FTSE/MIB became the most persistent indices in contrast to NIKKEI 225 and FTSE 100, which were amongst the least persistent.

Suggested Citation

  • Bentes, Sónia R., 2021. "How COVID-19 has affected stock market persistence? Evidence from the G7’s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004830
    DOI: 10.1016/j.physa.2021.126210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004830
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Bekaert & Michael Ehrmann & Marcel Fratzscher & Arnaud Mehl, 2014. "The Global Crisis and Equity Market Contagion," Journal of Finance, American Finance Association, vol. 69(6), pages 2597-2649, December.
    2. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    3. Choi, Sujung, 2016. "Herding among local individual investors: Evidence from online and offline trading," Economics Letters, Elsevier, vol. 144(C), pages 4-6.
    4. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    5. Shehzad, Khurram & Xiaoxing, Liu & Kazouz, Hayfa, 2020. "COVID-19’s disasters are perilous than Global Financial Crisis: A rumor or fact?," Finance Research Letters, Elsevier, vol. 36(C).
    6. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Baek, Seungho & Mohanty, Sunil K. & Glambosky, Mina, 2020. "COVID-19 and stock market volatility: An industry level analysis," Finance Research Letters, Elsevier, vol. 37(C).
    9. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-186, January.
    10. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    11. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    12. Kinateder, Harald & Campbell, Ross & Choudhury, Tonmoy, 2021. "Safe haven in GFC versus COVID-19: 100 turbulent days in the financial markets," Finance Research Letters, Elsevier, vol. 43(C).
    13. Stijn Claessens, 2010. "The Financial Crisis," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 4(2), pages 177-196, May.
    14. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    15. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    16. Lidija Dedi & Burhan F. Yavas, 2016. "Return and volatility spillovers in equity markets: An investigation using various GARCH methodologies," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1266788-126, December.
    17. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    18. Stijn Claessens & Giovanni Dell’Ariccia & Deniz Igan & Luc Laeven, 2010. "Cross-country experiences and policy implications from the global financial crisis [From Great Depression to Great Credit Crisis: Similarities, differences and lessons]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 25(62), pages 267-293.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    20. Corbet, Shaen & Hou, Yang & Hu, Yang & Oxley, Les, 2020. "The influence of the COVID-19 pandemic on asset-price discovery: Testing the case of Chinese informational asymmetry," International Review of Financial Analysis, Elsevier, vol. 72(C).
    21. Iqbal, Najaf & Fareed, Zeeshan & Wan, Guangcai & Shahzad, Farrukh, 2021. "Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 73(C).
    22. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    23. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    24. Mensi, Walid & Sensoy, Ahmet & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices," Resources Policy, Elsevier, vol. 69(C).
    25. Economou, Fotini & Katsikas, Epameinondas & Vickers, Gregory, 2016. "Testing for herding in the Athens Stock Exchange during the crisis period," Finance Research Letters, Elsevier, vol. 18(C), pages 334-341.
    26. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    27. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    28. Bentes, Sónia R., 2021. "On the hysteresis of financial crises in the US: Evidence from S&P 500," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    29. Rülke, Jan-Christoph & Silgoner, Maria & Wörz, Julia, 2016. "Herding behavior of business cycle forecasters," International Journal of Forecasting, Elsevier, vol. 32(1), pages 23-33.
    30. Han, Young Wook, 2014. "Effects of Financial Crises on the Long Memory Volatility Dependency of Foreign Exchange Rates: the Asian Crisis vs. the Global Crisis," East Asian Economic Review, Korea Institute for International Economic Policy, vol. 18(1), pages 3-27, March.
    31. Zaremba, Adam & Kizys, Renatas & Aharon, David Y. & Demir, Ender, 2020. "Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe," Finance Research Letters, Elsevier, vol. 35(C).
    32. Albulescu, Claudiu Tiberiu, 2021. "COVID-19 and the United States financial markets’ volatility," Finance Research Letters, Elsevier, vol. 38(C).
    33. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    34. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    35. Cepoi, Cosmin-Octavian, 2020. "Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil," Finance Research Letters, Elsevier, vol. 36(C).
    36. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.
    37. Le, Trung Hai & Do, Hung Xuan & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Covid-19 pandemic and tail-dependency networks of financial assets," Finance Research Letters, Elsevier, vol. 38(C).
    38. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    39. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    40. Litimi, Houda & BenSaïda, Ahmed & Bouraoui, Omar, 2016. "Herding and excessive risk in the American stock market: A sectoral analysis," Research in International Business and Finance, Elsevier, vol. 38(C), pages 6-21.
    41. Kumar, Niraj & Viswanathan, G.M. & Kenkre, V.M., 2009. "Hurst exponents for interacting random walkers obeying nonlinear Fokker–Planck equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3687-3694.
    42. Dutta, Anupam & Das, Debojyoti & Jana, R.K. & Vo, Xuan Vinh, 2020. "COVID-19 and oil market crash: Revisiting the safe haven property of gold and Bitcoin," Resources Policy, Elsevier, vol. 69(C).
    43. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Liu, Xueyong & Chen, Zhihua & Chen, Zhensong & Yao, Yinhong, 2022. "The time-varying spillover effect of China’s stock market during the COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Wang, Jianxin, 2022. "Market distraction and near-zero daily volatility persistence," International Review of Financial Analysis, Elsevier, vol. 80(C).
    4. Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    5. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    6. Talal A. N. M. S. Alotaibi & Lucía Morales, 2022. "Financial Uncertainty from a Dual Shock at Global Level–Insights from Kuwait," IJFS, MDPI, vol. 10(4), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bentes, Sónia R., 2022. "On the stylized facts of precious metals’ volatility: A comparative analysis of pre- and during COVID-19 crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    3. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    4. Pierdomenico Duttilo & Stefano Antonio Gattone & Tonio Di Battista, 2021. "Volatility Modeling: An Overview of Equity Markets in the Euro Area during COVID-19 Pandemic," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    5. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    6. Bentes, Sonia R., 2015. "Forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 355-364.
    7. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    8. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    9. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    10. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
    11. Michael McKenzie & Heather Mitchell & Robert Brooks & Robert Faff, 2001. "Power ARCH modelling of commodity futures data on the London Metal Exchange," The European Journal of Finance, Taylor & Francis Journals, vol. 7(1), pages 22-38.
    12. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    13. Bentes, Sonia R., 2016. "Long memory volatility of gold price returns: How strong is the evidence from distinct economic cycles?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 149-160.
    14. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    15. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
    16. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    17. Stavros Degiannakis & Evdokia Xekalaki, 2005. "Predictability and model selection in the context of ARCH models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(1), pages 55-82, January.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.

    More about this item

    Keywords

    COVID-19; Volatility; Persistence; Conditional variance; G7; FIGARCH;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.