IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v7y1998i1p77-91.html
   My bibliography  Save this article

A variance stabilizing transformation for the Gini concentration ratio

Author

Listed:
  • Emma Sarno

Abstract

No abstract is available for this item.

Suggested Citation

  • Emma Sarno, 1998. "A variance stabilizing transformation for the Gini concentration ratio," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 7(1), pages 77-91, April.
  • Handle: RePEc:spr:stmapp:v:7:y:1998:i:1:p:77-91
    DOI: 10.1007/BF03178922
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF03178922
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF03178922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Sendler, 1979. "On statistical inference in concentration measurement," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 26(1), pages 109-122, December.
    2. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    3. Cronin, D C, 1979. "Function for Size Distribution of Incomes: A Further Comment," Econometrica, Econometric Society, vol. 47(3), pages 773-774, May.
    4. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    3. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    4. Jos'e Miguel Flores-Contr'o, 2024. "The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping," Papers 2402.11715, arXiv.org, revised Sep 2024.
    5. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    6. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    7. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2012. "A new model of income distribution: the κ-generalized distribution," Journal of Economics, Springer, vol. 105(1), pages 63-91, January.
    8. Samuel Dastrup & Rachel Hartshorn & James McDonald, 2007. "The impact of taxes and transfer payments on the distribution of income: A parametric comparison," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 353-369, December.
    9. Heshmati, Almas, 2004. "Inequalities and Their Measurement," IZA Discussion Papers 1219, Institute of Labor Economics (IZA).
    10. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    11. Pinkovskiy, Maxim L., 2013. "World welfare is rising: Estimation using nonparametric bounds on welfare measures," Journal of Public Economics, Elsevier, vol. 97(C), pages 176-195.
    12. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    13. Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.
    14. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    15. Stéphane Guerrier & Samuel Orso & Maria-Pia Victoria-Feser, 2018. "Parametric Inference for Index Functionals," Econometrics, MDPI, vol. 6(2), pages 1-11, April.
    16. Schluter, Christian & Trede, Mark, 2002. "Tails of Lorenz curves," Journal of Econometrics, Elsevier, vol. 109(1), pages 151-166, July.
    17. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    18. Christopher C. Hadlock & J. Eric Bickel, 2019. "The Generalized Johnson Quantile-Parameterized Distribution System," Decision Analysis, INFORMS, vol. 16(1), pages 67-85, March.
    19. Stanislaw Maciej Kot & Piotr Paradowski, 2022. "The Atlas of Inequality Aversion: Theory and Empirical Evidence from the Luxembourg Income Study Database," LIS Working papers 826, LIS Cross-National Data Center in Luxembourg.
    20. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:7:y:1998:i:1:p:77-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.