IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i4d10.1007_s10260-024-00764-y.html
   My bibliography  Save this article

Gauging Airbnb review sentiments and critical key-topics by small area estimation

Author

Listed:
  • Luca Frigau

    (University of Cagliari)

  • Giulia Contu

    (University of Cagliari)

  • Marco Ortu

    (University of Cagliari)

  • Andrea Carta

    (University of Cagliari)

Abstract

In literature, several researchers have discovered that the reviews written about Airbnb accommodation tend to be extremely positive than those published on other famous platforms, consequently, many negative experiences remain untracked. Leaving negative experiences underrepresented hampers hosts’ ability to improve their services. To overcome this gap, we employ Small Area Estimation to quantify negative sentiment in Airbnb reviews and the relative critical topics that characterize them. Our methodology involves a two-step process: first, we employ sentiment analysis and topic modeling to identify negative sentiment and critical issues, followed by the application of a mixed effect random forest model to provide a granular analysis of Airbnb reviews in small sub-populations in the context of small area estimation. We focus on domains of the city of Rome defined by geographical areas and the presence of hosts and Superhosts. Our findings reveal nuanced sentiment variations and critical topic proportions that traditional methods often overlook.

Suggested Citation

  • Luca Frigau & Giulia Contu & Marco Ortu & Andrea Carta, 2024. "Gauging Airbnb review sentiments and critical key-topics by small area estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1145-1170, September.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:4:d:10.1007_s10260-024-00764-y
    DOI: 10.1007/s10260-024-00764-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00764-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00764-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:4:d:10.1007_s10260-024-00764-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.