IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v25y2016i3d10.1007_s10260-015-0345-4.html
   My bibliography  Save this article

A method for K-Means seeds generation applied to text mining

Author

Listed:
  • Daniel Velez

    (Universidad Complutense)

  • Jorge Sueiras

    (Universidad Rey Juan Carlos)

  • Alejandro Ortega

    (Universidad Carlos III)

  • Jose F. Velez

    (Universidad Rey Juan Carlos)

Abstract

In this paper, a methodology is proposed in order to produce a set of seeds later used as a starting point to K-Means-type unsupervised classification algorithms for text mining. Our proposal involves using the eigenvectors obtained from principal component analysis to extract initial seeds, upon appropriate treatment for search of lightly overlapping clusters which are also clearly identified by keywords. This work is motivated by the interest of the authors in the problem of identification of topics and themes previously unknown in short texts. Therefore, in order to validate the goodness of this method, it was applied on a sample of labeled e-mails (NG20) representing a gold standard within the field of text mining. Specifically, some corpora referenced in the literature have been used, configured in accordance to a mix of topics contained in the sample. The proposed method improves on the results of other state-of-the-art methods to which it is compared.

Suggested Citation

  • Daniel Velez & Jorge Sueiras & Alejandro Ortega & Jose F. Velez, 2016. "A method for K-Means seeds generation applied to text mining," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(3), pages 477-499, August.
  • Handle: RePEc:spr:stmapp:v:25:y:2016:i:3:d:10.1007_s10260-015-0345-4
    DOI: 10.1007/s10260-015-0345-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-015-0345-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-015-0345-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentin Rousson & Theo Gasser, 2004. "Simple component analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 539-555, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronald Gunderson & Pin Ng, 2006. "Summarizing the Effect of a Wide Array of Amenity Measures into Simple Components," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 79(2), pages 313-335, November.
    2. Trendafilov, Nickolay T. & Vines, Karen, 2009. "Simple and interpretable discrimination," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 979-989, February.
    3. Sabatier, Robert & Reynès, Christelle, 2008. "Extensions of simple component analysis and simple linear discriminant analysis using genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4779-4789, June.
    4. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    5. Doyo Enki & Nickolay Trendafilov, 2012. "Sparse principal components by semi-partition clustering," Computational Statistics, Springer, vol. 27(4), pages 605-626, December.
    6. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    7. Antonello D’Ambra & Pietro Amenta, 2023. "An extension of correspondence analysis based on the multiple Taguchi’s index to evaluate the relationships between three categorical variables graphically: an application to the Italian football cham," Annals of Operations Research, Springer, vol. 325(1), pages 219-244, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:25:y:2016:i:3:d:10.1007_s10260-015-0345-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.