IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i10p4779-4789.html
   My bibliography  Save this article

Extensions of simple component analysis and simple linear discriminant analysis using genetic algorithms

Author

Listed:
  • Sabatier, Robert
  • Reynès, Christelle

Abstract

Extensions of Simple Component Analysis are proposed. Two methods are obtained: a new Simple Component Analysis and a Simple Linear Discriminant Analysis. These two methodologies use Genetic Algorithms, optimize a criterion (derived from the usual method) and add constraints. The objective is to obtain loadings constituted of a small number of integers determining blocks of variables. The programs implementing the methods have been developed using the R© language. Four applications are made and show a good robustness of the algorithms and a proximity to the optimal solution (from the usual PCA and LDA).

Suggested Citation

  • Sabatier, Robert & Reynès, Christelle, 2008. "Extensions of simple component analysis and simple linear discriminant analysis using genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4779-4789, June.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:10:p:4779-4789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00194-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    2. S. K. Vines, 2000. "Simple principal components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 441-451.
    3. J. N. R. Jeffers, 1967. "Two Case Studies in the Application of Principal Component Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(3), pages 225-236, November.
    4. Valentin Rousson & Theo Gasser, 2004. "Simple component analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 539-555, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trendafilov, Nickolay T. & Vines, Karen, 2009. "Simple and interpretable discrimination," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 979-989, February.
    2. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Doyo Enki & Nickolay Trendafilov, 2012. "Sparse principal components by semi-partition clustering," Computational Statistics, Springer, vol. 27(4), pages 605-626, December.
    4. Nickolay Trendafilov, 2014. "From simple structure to sparse components: a review," Computational Statistics, Springer, vol. 29(3), pages 431-454, June.
    5. Luca Scrucca, 2006. "Subset selection in dimension reduction methods," Quaderni del Dipartimento di Economia, Finanza e Statistica 23/2006, Università di Perugia, Dipartimento Economia.
    6. Carrizosa, Emilio & Guerrero, Vanesa, 2014. "Biobjective sparse principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 151-159.
    7. Ronald Gunderson & Pin Ng, 2006. "Summarizing the Effect of a Wide Array of Amenity Measures into Simple Components," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 79(2), pages 313-335, November.
    8. Cumming, J.A. & Wooff, D.A., 2007. "Dimension reduction via principal variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 550-565, September.
    9. Davood Hajinezhad & Qingjiang Shi, 2018. "Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications," Journal of Global Optimization, Springer, vol. 70(1), pages 261-288, January.
    10. Choulakian, V. & Allard, J. & Almhana, J., 2006. "Robust centroid method," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 737-746, November.
    11. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    12. Antonello D’Ambra & Pietro Amenta, 2023. "An extension of correspondence analysis based on the multiple Taguchi’s index to evaluate the relationships between three categorical variables graphically: an application to the Italian football cham," Annals of Operations Research, Springer, vol. 325(1), pages 219-244, June.
    13. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    14. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    15. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    16. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    17. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    18. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    19. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    20. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:10:p:4779-4789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.