IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v23y2014i4p565-575.html
   My bibliography  Save this article

Minimum density power divergence estimator for covariance matrix based on skew $$t$$ t distribution

Author

Listed:
  • Byungsoo Kim
  • Sangyeol Lee

Abstract

In this paper, we study the problem of estimating the covariance matrix of stationary multivariate time series based on the minimum density power divergence method that uses a multivariate skew $$t$$ t distribution family. It is shown that under regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. A simulation study is provided for illustration. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Byungsoo Kim & Sangyeol Lee, 2014. "Minimum density power divergence estimator for covariance matrix based on skew $$t$$ t distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 565-575, November.
  • Handle: RePEc:spr:stmapp:v:23:y:2014:i:4:p:565-575
    DOI: 10.1007/s10260-014-0284-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-014-0284-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-014-0284-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. A. Campbell, 1980. "Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 231-237, November.
    2. Adelchi Azzalini & Marc G. Genton, 2008. "Robust Likelihood Methods Based on the Skew‐t and Related Distributions," International Statistical Review, International Statistical Institute, vol. 76(1), pages 106-129, April.
    3. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    4. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    5. Kim, Byungsoo & Lee, Sangyeol, 2013. "Robust estimation for the covariance matrix of multivariate time series based on normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 125-140.
    6. Álvarez Alvarado, Marcos Tulio, 2003. "¿Existe una alternativa al capitalismo?," Observatorio de la Economía Latinoamericana, Servicios Académicos Intercontinentales SL. Hasta 31/12/2022, issue 16, November.
    7. Byungsoo Kim & Sangyeol Lee, 2011. "Robust estimation for the covariance matrix of multi‐variate time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 469-481, September.
    8. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    3. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    4. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    5. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    6. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    7. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    8. Luca Greco, 2011. "Minimum Hellinger distance based inference for scalar skew-normal and skew-t distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 120-137, May.
    9. Nicola Loperfido, 2019. "Finite mixtures, projection pursuit and tensor rank: a triangulation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 145-173, March.
    10. Teimouri, Mahdi & Nadarajah, Saralees, 2013. "On simulating Balakrishnan skew-normal variates," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 52-58.
    11. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    12. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    13. Yangxin Huang & Tao Lu, 2017. "Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features," Computational Statistics, Springer, vol. 32(1), pages 179-196, March.
    14. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    15. Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.
    16. Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
    17. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    18. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    19. Christophe Ley & Davy Paindaveine, 2010. "On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 235-250.
    20. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:23:y:2014:i:4:p:565-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.