IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v22y2013i3p285-303.html
   My bibliography  Save this article

On the parameters of Zenga distribution

Author

Listed:
  • Alberto Arcagni
  • Francesco Porro

Abstract

In 2010 Zenga introduced a new three-parameter model for distributions by size that can be used to represent income, wealth, financial and actuarial variables. This paper proposes a summary of its main properties, followed by a focus on the interpretation of the parameters in terms of inequality. The scale parameter μ is equal to the expectation, and it does not affect the inequality, while the two shape parameters α and θ are inverse and direct inequality indicators respectively. This result is obtained through stochastic orders based on inequality curves. A procedure to generate a random sample from Zenga distribution is also proposed. The second part of this article looks at the parameter estimation. Analytical solution of method of moments is obtained. This result is used as a starting point of numerical procedures to obtain maximum likelihood estimates both on ungrouped and grouped data. In the application, three empirical income distributions are considered and the aforementioned estimates are evaluated. A comparison with other well-known models is provided, by the evaluation of three goodness-of-fit indexes. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Alberto Arcagni & Francesco Porro, 2013. "On the parameters of Zenga distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(3), pages 285-303, August.
  • Handle: RePEc:spr:stmapp:v:22:y:2013:i:3:p:285-303
    DOI: 10.1007/s10260-012-0219-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-012-0219-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-012-0219-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    2. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    3. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    4. James B. McDonald & Michael Ransom, 2008. "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 8, pages 147-166, Springer.
    5. Barry C. Arnold, 2008. "Pareto and Generalized Pareto Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 7, pages 119-145, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucio De Capitani & Federica Nicolussi & Alessandro Zini, 2017. "Trivariate Burr-III copula with applications to income data," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 109-124, April.
    2. Trzcińska Kamila, 2020. "Analysis of Household Income in Poland Based on the Zenga Distribution and Selected Income Inequality Measure," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 421-436, June.
    3. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    4. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    5. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    6. Małgorzata Ćwiek & Kamila Trzcińska, 2023. "Assessment of goodness of fit of income distribution in France and Germany based on the Zenga distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4013-4027, October.
    7. Trzcińska Kamila & Zalewska Elżbieta, 2023. "A Comparative Analysis of Household Incomes of People with Different Levels of Education in Poland and the USA," Folia Oeconomica Stetinensia, Sciendo, vol. 23(2), pages 387-401, December.
    8. Kamila Trzcińska & Elżbieta Zalewska, 2024. "A Comparative Analysis of Household Incomes of People with Different Levels of Education in Poland and the USA," LIS Working papers 877, LIS Cross-National Data Center in Luxembourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    3. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    4. F. Clementi & A. L. Dabalen & V. Molini & F. Schettino, 2020. "We forgot the middle class! Inequality underestimation in a changing Sub-Saharan Africa," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(1), pages 45-70, March.
    5. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    6. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    7. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    8. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    9. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    10. Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
    11. Sohn, Alexander & Klein, Nadja & Kneib, Thomas, 2014. "A new semiparametric approach to analysing conditional income distributions," University of Göttingen Working Papers in Economics 192, University of Goettingen, Department of Economics.
    12. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    13. Brzezinski, Michal, 2014. "Empirical modeling of the impact factor distribution," Journal of Informetrics, Elsevier, vol. 8(2), pages 362-368.
    14. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    15. Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
    16. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, J., 2015. "Entropy maximization under the constraints on the generalized Gini index and its application in modeling income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 657-666.
    17. Boccanfuso, Dorothée & Richard, Patrick & Savard, Luc, 2013. "Parametric and nonparametric income distribution estimators in CGE micro-simulation modeling," Economic Modelling, Elsevier, vol. 35(C), pages 892-899.
    18. Nartikoev, Alan & Peresetsky, Anatoly, 2019. "Modeling the dynamics of income distribution in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 105-125.
    19. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    20. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:22:y:2013:i:3:p:285-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.