IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v15y2006i2d10.1007_s10260-006-0011-y.html
   My bibliography  Save this article

Maximum Likelihood Inference for Log-linear Models Subject to Constraints of Double Monotone Dependence

Author

Listed:
  • Manuela Cazzaro

    (Università di Milano Bicocca)

  • Roberto Colombi

    (Università di Bergamo)

Abstract

To model an hypothesis of double monotone dependence between two ordinal categorical variables A and B usually a set of symmetric odds ratios defined on the joint probability function is subject to linear inequality constraints. Conversely in this paper two sets of asymmetric odds ratios defined, respectively, on the conditional distributions of A given B and on the conditional distributions of B given A are subject to linear inequality constraints. If the joint probabilities are parameterized by a saturated log-linear model, these constraints are nonlinear inequality constraints on the log-linear parameters. The problem here considered is a non-standard one both for the presence of nonlinear inequality constraints and for the fact that the number of these constraints is greater than the number of the parameters of the saturated log-linear model.

Suggested Citation

  • Manuela Cazzaro & Roberto Colombi, 2006. "Maximum Likelihood Inference for Log-linear Models Subject to Constraints of Double Monotone Dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 177-190, August.
  • Handle: RePEc:spr:stmapp:v:15:y:2006:i:2:d:10.1007_s10260-006-0011-y
    DOI: 10.1007/s10260-006-0011-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-006-0011-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-006-0011-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agresti, Alan & Coull, Brent A., 1998. "Order-restricted inference for monotone trend alternatives in contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 139-155, August.
    2. Bartolucci F. & Forcina A. & Dardanoni V., 2001. "Positive Quadrant Dependence and Marginal Modeling in Two-Way Tables With Ordered Margins," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1497-1505, December.
    3. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    4. Bartolucci, F. & Scaccia, L., 2004. "Testing for positive association in contingency tables with fixed margins," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 195-210, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Colombi & A. Forcina, 2016. "Testing order restrictions in contingency tables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 73-90, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuela Cazzaro & Roberto Colombi, 2006. "Maximum Likelihood Inference for Log-linear Models Subject to Constraints of Double Monotone Dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 177-190, August.
    2. Alan Agresti, 2014. "Two Bayesian/frequentist challenges for categorical data analyses," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 125-132, August.
    3. Bartolucci, Francesco & Scaccia, Luisa & Farcomeni, Alessio, 2012. "Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4067-4080.
    4. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    5. Linda J. Young & M. Kateri & A. Agresti, 2013. "Bayesian inference about odds ratio structure in ordinal contingency tables," Environmetrics, John Wiley & Sons, Ltd., vol. 24(5), pages 281-288, August.
    6. Bartolucci, F. & Scaccia, L., 2004. "Testing for positive association in contingency tables with fixed margins," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 195-210, August.
    7. Jarle Aarstad & Olav Andreas Kvitastein & Stig-Erik Jakobsen, 2019. "What Drives Enterprise Product Innovation? Assessing How Regional, National, And International Inter-Firm Collaboration Complement Or Substitute For R&D Investments," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-25, June.
    8. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    9. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    10. Edward L. Glaeser & Joseph Gyourko, 2006. "Housing Dynamics," NBER Working Papers 12787, National Bureau of Economic Research, Inc.
    11. Chang, Yoosoon, 2004. "Bootstrap unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
    12. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    13. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    14. Iglesias Emma M., 2011. "Constrained k-class Estimators in the Presence of Weak Instruments," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-13, September.
    15. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    16. Ekaterina Oparina & Sorawoot Srisuma, 2022. "Analyzing Subjective Well-Being Data with Misclassification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 730-743, April.
    17. Sauer, J., 2007. "Monotonicity and Curvature – A Bootstrapping Approach," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    18. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    19. Zhu, Hongtu & Zhang, Heping, 2006. "Asymptotics for estimation and testing procedures under loss of identifiability," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 19-45, January.
    20. Ben, Youhong & Jiang, Feiyu, 2020. "A note on Portmanteau tests for conditional heteroscedastistic models," Economics Letters, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:15:y:2006:i:2:d:10.1007_s10260-006-0011-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.