IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v14y2005i1d10.1007_bf02511572.html
   My bibliography  Save this article

Parametric estimation for ARFIMA models via spectral methods

Author

Listed:
  • Mauro Coli

    (University “G. D'Annunzio”)

  • Lara Fontanella

    (University “G. D'Annunzio”)

  • Mariagrazia Granturco

    (University “G. D'Annunzio”)

Abstract

Given a fractional integrated, autoregressive, moving average,ARFIMA (p, d, q) process, the simultaneous estimation of the short and long memory parameters can be achieved by maximum likelihood estimators. In this paper, following a two-step algorithm, the coefficients are estimated combining the maximum likelihood estimators with the general orthogonal decomposition of stochastic processes. In particular, the principal component analysis of stochastic processes is exploited to estimate the short memory parameters, which are plugged into the maximum likelihood function to obtain the fractional differencingd.

Suggested Citation

  • Mauro Coli & Lara Fontanella & Mariagrazia Granturco, 2005. "Parametric estimation for ARFIMA models via spectral methods," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(1), pages 11-27, February.
  • Handle: RePEc:spr:stmapp:v:14:y:2005:i:1:d:10.1007_bf02511572
    DOI: 10.1007/BF02511572
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02511572
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02511572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    5. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 475-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    2. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    3. Emmanuel Dubois & Sandrine Lardic & Valérie Mignon, 2004. "The Exact Maximum Likelihood-Based Test for Fractional Cointegration: Critical Values, Power and Size," Computational Economics, Springer;Society for Computational Economics, vol. 24(3), pages 239-255, July.
    4. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
    5. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    6. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    7. Valerie Mignon & Sandrine Lardic, 2004. "The exact maximum likelihood estimation of ARFIMA processes and model selection criteria: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(21), pages 1-16.
    8. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    9. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, vol. 93(1), pages 149-175, November.
    10. Bae, Sang-Kun & Jensen, Mark J. & Murdock, Scott G., 2005. "Long-run neutrality in a fractionally integrated model," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 257-274, June.
    11. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    12. repec:ebl:ecbull:v:3:y:2004:i:21:p:1-16 is not listed on IDEAS
    13. Coleman, Simeon, 2010. "Inflation persistence in the Franc zone: Evidence from disaggregated prices," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 426-442, March.
    14. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    15. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    16. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    17. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    18. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    19. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    20. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
    21. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:14:y:2005:i:1:d:10.1007_bf02511572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.