IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v11y2002i1d10.1007_bf02511446.html
   My bibliography  Save this article

Cross-validation methods in principal component analysis: A comparison

Author

Listed:
  • Giancarlo Diana

    (Università di Padova)

  • Chiara Tommasi

    (Università di Padova)

Abstract

In principal component analysis (PCA), it is crucial to know how many principal components (PCs) should be retained in order to account for most of the data variability. A class of “objective” rules for finding this quantity is the class of cross-validation (CV) methods. In this work we compare three CV techniques showing how the performance of these methods depends on the covariance matrix structure. Finally we propose a rule for the choice of the “best” CV method and give an application to real data.

Suggested Citation

  • Giancarlo Diana & Chiara Tommasi, 2002. "Cross-validation methods in principal component analysis: A comparison," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 71-82, February.
  • Handle: RePEc:spr:stmapp:v:11:y:2002:i:1:d:10.1007_bf02511446
    DOI: 10.1007/BF02511446
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02511446
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02511446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. J. Krzanowski, 1987. "Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(1), pages 22-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed El Koujok & Hakim Ghezzaz & Mouloud Amazouz, 2021. "Energy inefficiency diagnosis in industrial process through one-class machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2043-2060, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pacheco, Joaquín & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
    2. Jérome SARACCO & Marie CHAVENT & Vanessa KUENTZ, 2010. "Clustering of categorical variables around latent variables," Cahiers du GREThA (2007-2019) 2010-02, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    3. Tangian, Andranik S., 2017. "Selection of questions for VAAs and the VAA-based elections," Working Paper Series in Economics 100, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    4. Michael Greenacre, 2023. "The chi-square standardization, combined with Box-Cox transformation, is a valid alternative to transforming to logratios in compositional data analysis," Economics Working Papers 1857, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Cumming, J.A. & Wooff, D.A., 2007. "Dimension reduction via principal variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 550-565, September.
    6. Jolanta Batog & Jakub Frankowski & Aleksandra Wawro & Agnieszka Łacka, 2020. "Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop," Energies, MDPI, vol. 13(23), pages 1-12, November.
    7. Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
    8. Brusco, Michael J., 2014. "A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 38-53.
    9. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. António Pedro Duarte Silva, 2002. "Discarding Variables in a Principal Component Analysis: Algorithms for All-Subsets Comparisons," Computational Statistics, Springer, vol. 17(2), pages 251-271, July.
    11. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    12. Cadima, Jorge & Cerdeira, J. Orestes & Minhoto, Manuel, 2004. "Computational aspects of algorithms for variable selection in the context of principal components," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 225-236, September.
    13. Michael Greenacre, 2024. "The chiPower transformation: a valid alternative to logratio transformations in compositional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 769-796, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:11:y:2002:i:1:d:10.1007_bf02511446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.