IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v13y2021i2d10.1007_s12561-021-09306-6.html
   My bibliography  Save this article

Distance-Based Analysis with Quantile Regression Models

Author

Listed:
  • Shaoyu Li

    (University of North Carolina at Charlotte)

  • Yanqing Sun

    (University of North Carolina at Charlotte)

  • Liyang Diao

    (Seres Therapeutics)

  • Xue Wang

    (Mayo Clinic)

Abstract

Non-standard structured, multivariate data are emerging in many research areas, including genetics and genomics, ecology, and social science. Suitably defined pairwise distance measures are commonly used in distance-based analysis to study the association between the variables. In this work, we consider a linear quantile regression model for pairwise distances. We investigate the large sample properties of an estimator of the unknown coefficients and propose statistical inference procedures correspondingly. Extensive simulations provide evidence of satisfactory finite sample properties of the proposed method. Finally, we applied the method to a microbiome association study to illustrate its utility.

Suggested Citation

  • Shaoyu Li & Yanqing Sun & Liyang Diao & Xue Wang, 2021. "Distance-Based Analysis with Quantile Regression Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 291-312, July.
  • Handle: RePEc:spr:stabio:v:13:y:2021:i:2:d:10.1007_s12561-021-09306-6
    DOI: 10.1007/s12561-021-09306-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-021-09306-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-021-09306-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    3. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    4. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lena Bedawi Elfadli Elmonshid & Omer Ahmed Sayed & Ghadda Mohamed Awad Yousif & Kamal Eldin Hassan Ibrahim Eldaw & Muawya Ahmed Hussein, 2024. "The Impact of Financial Efficiency and Renewable Energy Consumption on CO2 Emission Reduction in GCC Economies: A Panel Data Quantile Regression Approach," Sustainability, MDPI, vol. 16(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narula, Subhash C. & Wellington, John F. & Lewis, Stephen A., 2012. "Valuating residential real estate using parametric programming," European Journal of Operational Research, Elsevier, vol. 217(1), pages 120-128.
    2. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    3. Tanya O’Garra & Susana Mourato, 2007. "Public Preferences for Hydrogen Buses: Comparing Interval Data, OLS and Quantile Regression Approaches," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(4), pages 389-411, April.
    4. Mohamed S. Ahmed & John A. Doukas, 2021. "Revisiting disposition effect and momentum: a quantile regression perspective," Review of Quantitative Finance and Accounting, Springer, vol. 56(3), pages 1087-1128, April.
    5. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    6. Constantino Cronemberger Mendes & Maria da Conceicao Sampaio de Sousa, 2006. "Demand for locally provided public services within the median voter's framework: the case of the Brazilian municipalities," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 239-251.
    7. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    8. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    9. Ajanaku, Bolarinwa A. & Collins, Alan R., 2024. "“Comparing merit order effects of wind penetration across wholesale electricity markets”," Renewable Energy, Elsevier, vol. 226(C).
    10. Qingjie Xia & Lina Song & Shi Li & Simon Appleton, 2014. "The effect of the state sector on wage inequality in urban China: 1988--2007," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(1), pages 29-45, February.
    11. Libo Yin & Jing Nie & Liyan Han, 2021. "Intermediary capital risk and commodity futures volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 577-640, May.
    12. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    13. RAMDANI, Dendi & VAN WITTELOOSTUIJN, Arjen, 2009. "Board independence, CEO duality and firm performance: A quantile regression analysis for Indonesia, Malaysia, South Korea and Thailand," ACED Working Papers 2009003, University of Antwerp, Faculty of Business and Economics.
    14. Joshua D. Detre & Hiroki Uematsu & Ashok K. Mishra, 2011. "The influence of GM crop adoption on the profitability of farms operated by young and beginning farmers," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(1), pages 41-61, May.
    15. Vighneswara Swamy & M. Dharani, 2020. "RETRACTED ARTICLE: Google Search Intensity and the Investor Attention Effect: A Quantile Regression Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 403-423, June.
    16. Maria Letizia Giorgetti, 2001. "Quantile Regression in Lower Bound Estimation," STICERD - Economics of Industry Papers 29, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Chevapatrakul, Thanaset, 2015. "Monetary environments and stock returns: International evidence based on the quantile regression technique," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 83-108.
    18. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    19. Oliver Musshoff & Norbert Hirschauer, 2011. "A behavioral economic analysis of bounded rationality in farm financing decisions," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(1), pages 62-83, May.
    20. RAMDANI, Dendi & VAN WITTELOOSTUIJN, Arjen, 2009. "Board independence, CEO duality and firm performance: A quantile regression analysis for Indonesia, Malaysia, South Korea and Thailand," Working Papers 2009004, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:13:y:2021:i:2:d:10.1007_s12561-021-09306-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.