IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v11y2019i1d10.1007_s12561-017-9206-z.html
   My bibliography  Save this article

A Spatio-Temporal Model for Longitudinal Image-on-Image Regression

Author

Listed:
  • Arnab Hazra

    (North Carolina State University)

  • Brian J. Reich

    (North Carolina State University)

  • Daniel S. Reich

    (National Institute of Neurological Disorders and Stroke)

  • Russell T. Shinohara

    (University of Pennsylvania)

  • Ana-Maria Staicu

    (North Carolina State University)

Abstract

Neurologists and radiologists often use magnetic resonance imaging (MRI) in the management of subjects with multiple sclerosis (MS) because it is sensitive to inflammatory and demyelinative changes in the white matter of the brain and spinal cord. Two conventional modalities used for identifying lesions are T1-weighted (T1) and T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging, which are used clinically and in research studies. Magnetization transfer ratio (MTR), which is available only in research settings, is an advanced MRI modality that has been used extensively for measuring disease-related demyelination both in white-matter lesions as well across normal-appearing white matter. Acquiring MTR is not standard in clinical practice, due to the increased scan time and cost. Hence, prediction of MTR based on the modalities T1 and FLAIR could have great impact on the availability of these promising measures for improved patient management. We propose a spatio-temporal regression model for image response and image predictors that are acquired longitudinally, with images being co-registered within the subject but not across subjects. The model is additive, with the response at a voxel being dependent on the available covariates not only through the current voxel but also on the imaging information from the voxels within a neighboring spatial region as well as their temporal gradients. We propose a dynamic Bayesian estimation procedure that updates the parameters of the subject-specific regression model as data accumulate. To bypass the computational challenges associated with a Bayesian approach for high-dimensional imaging data, we propose an approximate Bayesian inference technique. We assess the model fitting and the prediction performance using longitudinally acquired MRI images from 46 MS patients.

Suggested Citation

  • Arnab Hazra & Brian J. Reich & Daniel S. Reich & Russell T. Shinohara & Ana-Maria Staicu, 2019. "A Spatio-Temporal Model for Longitudinal Image-on-Image Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 22-46, April.
  • Handle: RePEc:spr:stabio:v:11:y:2019:i:1:d:10.1007_s12561-017-9206-z
    DOI: 10.1007/s12561-017-9206-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9206-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9206-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ani Eloyan & Haochang Shou & Russell T Shinohara & Elizabeth M Sweeney & Mary Beth Nebel & Jennifer L Cuzzocreo & Peter A Calabresi & Daniel S Reich & Martin A Lindquist & Ciprian M Crainiceanu, 2014. "Health Effects of Lesion Localization in Multiple Sclerosis: Spatial Registration and Confounding Adjustment," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    2. Hongtu Zhu & Jianqing Fan & Linglong Kong, 2014. "Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1084-1098, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    2. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    3. Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
    4. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    5. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    6. Yan-Yong Zhao & Jin-Guan Lin & Hong-Xia Wang & Xing-Fang Huang, 2017. "Jump-detection-based estimation in time-varying coefficient models and empirical applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 574-599, September.
    7. Zhengjia Wang & John Magnotti & Michael S. Beauchamp & Meng Li, 2023. "Functional group bridge for simultaneous regression and support estimation," Biometrics, The International Biometric Society, vol. 79(2), pages 1226-1238, June.
    8. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    9. Brian J. Reich & Joseph Guinness & Simon N. Vandekar & Russell T. Shinohara & Ana†Maria Staicu, 2018. "Fully Bayesian spectral methods for imaging data," Biometrics, The International Biometric Society, vol. 74(2), pages 645-652, June.
    10. Baiguo An & Beibei Zhang, 2020. "Logistic regression with image covariates via the combination of L1 and Sobolev regularizations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
    11. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    12. Philip T. Reiss & Lei Huang & Pei‐Shien Wu & Huaihou Chen & Stan Colcombe, 2017. "Pointwise influence matrices for functional‐response regression," Biometrics, The International Biometric Society, vol. 73(4), pages 1092-1101, December.
    13. Xiong Cai & Liugen Xue & Xiaolong Pu & Xingyu Yan, 2021. "Efficient Estimation for Varying-Coefficient Mixed Effects Models with Functional Response Data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 467-495, May.
    14. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    15. Zhao, Yan-Yong & Lin, Jin-Guan, 2019. "Estimation and test of jump discontinuities in varying coefficient models with empirical applications," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 145-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:11:y:2019:i:1:d:10.1007_s12561-017-9206-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.