IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v10y2018i1d10.1007_s12561-017-9191-2.html
   My bibliography  Save this article

A Multivariate Generalized Linear Model Approach to Mediation Analysis and Application of Confidence Ellipses

Author

Listed:
  • Brandie D. Wagner

    (University of Colorado Denver
    University of Colorado School of Medicine)

  • Miranda Kroehl

    (University of Colorado Denver)

  • Ryan Gan

    (University of Colorado)

  • Susan K. Mikulich-Gilbertson

    (University of Colorado Denver
    University of Colorado School of Medicine)

  • Scott D. Sagel

    (University of Colorado School of Medicine)

  • Paula D. Riggs

    (University of Colorado School of Medicine)

  • Talia Brown

    (University of Colorado)

  • Janet Snell-Bergeon

    (University of Colorado School of Medicine)

  • Gary O. Zerbe

    (University of Colorado Denver)

Abstract

Mediation analysis evaluates the significance of an intermediate variable on the causal pathway between an exposure and an outcome. One commonly utilized test for mediation involves evaluation of counterfactual effects, estimated from separate regression models, corresponding to a composite null hypothesis. However, the “compositeness” of this null hypothesis is not commonly acknowledged and accounted for in mediation analyses. We describe a generalized multivariate approach in which these separate regression models are fit simultaneously in a single parsimonious model. This multivariate modeling approach can reproduce standard mediation analysis and has notable advantages over separate regression models, including the ability to combine distributions in the exponential family with any link functions and perform likelihood-based tests of some relevant hypotheses using existing software. We propose the use of a novel visual representation of confidence intervals of the two estimates for the indirect path with the use of a confidence ellipse. The calculation of the confidence ellipse is facilitated by the multivariate approach, can test the components of the composite null hypothesis under a single experiment-wise type I error rate, and does not require estimation of the standard error of the product of coefficients from two separate regressions. This method is illustrated using three examples. The first compares results between the multivariate method and separate regression models. The second example illustrates the proposed methods in the presence of an exposure–mediator interaction, missing data and confounding, and the third example utilizes these proposed methods for an outcome and mediator with negative binomial distributions.

Suggested Citation

  • Brandie D. Wagner & Miranda Kroehl & Ryan Gan & Susan K. Mikulich-Gilbertson & Scott D. Sagel & Paula D. Riggs & Talia Brown & Janet Snell-Bergeon & Gary O. Zerbe, 2018. "A Multivariate Generalized Linear Model Approach to Mediation Analysis and Application of Confidence Ellipses," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 139-159, April.
  • Handle: RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9191-2
    DOI: 10.1007/s12561-017-9191-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9191-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9191-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey M. Albert & Suchitra Nelson, 2011. "Generalized Causal Mediation Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 1028-1038, September.
    2. Pearl Judea, 2010. "An Introduction to Causal Inference," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-62, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caubet, Miguel & Samoilenko, Mariia & Drouin, Simon & Sinnett, Daniel & Krajinovic, Maja & Laverdière, Caroline & Marcil, Valérie & Lefebvre, Geneviève, 2023. "Bayesian joint modeling for causal mediation analysis with a binary outcome and a binary mediator: Exploring the role of obesity in the association between cranial radiation therapy for childhood acut," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    2. Chiara Di Maria & Antonino Abbruzzo & Gianfranco Lovison, 2022. "Networks as mediating variables: a Bayesian latent space approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 1015-1035, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    2. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    3. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    4. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.
    5. He, Jiaxiu & Wang, Xin (Shane) & Curry, David J., 2017. "Mediation analysis: A new test when all or some variables are categorical," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 780-798.
    6. Nerea Almeda & Carlos R. García-Alonso & José A. Salinas-Pérez & Mencía R. Gutiérrez-Colosía & Luis Salvador-Carulla, 2019. "Causal Modelling for Supporting Planning and Management of Mental Health Services and Systems: A Systematic Review," IJERPH, MDPI, vol. 16(3), pages 1-20, January.
    7. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    8. Humphreys, John M. & Srygley, Robert B. & Lawton, Douglas & Hudson, Amy R. & Branson, David H., 2022. "Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations," Ecological Modelling, Elsevier, vol. 471(C).
    9. Lyle D. Burgoon & Michelle Angrish & Natalia Garcia‐Reyero & Nathan Pollesch & Anze Zupanic & Edward Perkins, 2020. "Predicting the Probability that a Chemical Causes Steatosis Using Adverse Outcome Pathway Bayesian Networks (AOPBNs)," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 512-523, March.
    10. Wei Wang & Jeffrey M. Albert, 2017. "Causal mediation analysis for the Cox proportional hazards model with a smooth baseline hazard estimator," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 741-757, August.
    11. Abhinandan Dalal & Diganta Mukherjee & Subhrajyoty Roy, 2020. "The Information Content of Taster's Valuation in Tea Auctions of India," Papers 2005.02814, arXiv.org.
    12. Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    13. Naser Makarem & Frank Hong Liu & Lei Chen, 2023. "Evidence that financing decisions contribute to the zero-earnings discontinuity," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 231-257, January.
    14. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
    15. Bokhari, Farasat A.S. & Dobson, Paul W. & Morciano, Marcello & Suhrcke, Marc, 2023. "Banning volume discounts to curb excessive consumption: A cautionary tale," European Economic Review, Elsevier, vol. 156(C).
    16. Martin Huber & Anna Solovyeva, 2020. "Direct and Indirect Effects under Sample Selection and Outcome Attrition," Econometrics, MDPI, vol. 8(4), pages 1-25, December.
    17. Anna B. Zaremba & Gareth W. Peters, 2022. "Statistical Causality for Multivariate Nonlinear Time Series via Gaussian Process Models," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2587-2632, December.
    18. David Bartram, 2021. "Cross-Sectional Model-Building for Research on Subjective Well-Being: Gaining Clarity on Control Variables," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(2), pages 725-743, June.
    19. Chanmin Kim & Michael J. Daniels & Bess H. Marcus & Jason A. Roy, 2017. "A framework for Bayesian nonparametric inference for causal effects of mediation," Biometrics, The International Biometric Society, vol. 73(2), pages 401-409, June.
    20. Hannah H Leslie & Deborah A Karasek & Laura F Harris & Emily Chang & Naila Abdulrahim & May Maloba & Megan J Huchko, 2014. "Cervical Cancer Precursors and Hormonal Contraceptive Use in HIV-Positive Women: Application of a Causal Model and Semi-Parametric Estimation Methods," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9191-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.