IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09928-3.html
   My bibliography  Save this article

Statistical Causality for Multivariate Nonlinear Time Series via Gaussian Process Models

Author

Listed:
  • Anna B. Zaremba

    (University College London)

  • Gareth W. Peters

    (University of California Santa Barbara)

Abstract

The ability to test for statistical causality in linear and nonlinear contexts, in stationary or non-stationary settings, and to identify whether statistical causality influences trend of volatility forms a particularly important class of problems to explore in multi-modal and multivariate processes. In this paper, we develop novel testing frameworks for statistical causality in general classes of multivariate nonlinear time series models. Our framework accommodates flexible features where causality may be present in either: trend, volatility or both structural components of the general multivariate Markov processes under study. In addition, we accommodate the added possibilities of flexible structural features such as long memory and persistence in the multivariate processes when applying our semi-parametric approach to causality detection. We design a calibration procedure and formal testing procedure to detect these relationships through classes of Gaussian process models. We provide a generic framework which can be applied to a wide range of problems, including partially observed generalised diffusions or general multivariate linear or nonlinear time series models. We demonstrate several illustrative examples of features that are easily testable under our framework to study the properties of the inference procedure developed including the power of the test, sensitivity and robustness. We then illustrate our method on an interesting real data example from commodity modelling.

Suggested Citation

  • Anna B. Zaremba & Gareth W. Peters, 2022. "Statistical Causality for Multivariate Nonlinear Time Series via Gaussian Process Models," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2587-2632, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09928-3
    DOI: 10.1007/s11009-022-09928-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09928-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09928-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    2. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    3. Campbell, J.Y. & Shiller, R.J., 1988. "Stock Prices, Earnings And Expected Dividends," Papers 334, Princeton, Department of Economics - Econometric Research Program.
    4. Anna Zaremba & Tomaso Aste, 2014. "Measures of Causality in Complex Datasets with application to financial data," Papers 1401.1457, arXiv.org, revised Jun 2014.
    5. repec:pri:cepsud:91malkiel is not listed on IDEAS
    6. Wen-Den Chen, 2006. "Estimating the long memory granger causality effect with a spectrum estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 193-200.
    7. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    8. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    9. Wilson, Paul, 2015. "The misuse of the Vuong test for non-nested models to test for zero-inflation," Economics Letters, Elsevier, vol. 127(C), pages 51-53.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. M. A. H. Dempster & Elena Medova & Ke Tang, 2012. "Determinants of oil futures prices and convenience yields," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1795-1809, December.
    12. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    13. Pearl Judea, 2010. "An Introduction to Causal Inference," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-62, February.
    14. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    15. James G. MacKinnon, 1983. "Model Specification Tests Against Non-Nested Alternatives," Working Paper 573, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    3. Pernagallo, Giuseppe & Torrisi, Benedetto, 2020. "Blindfolded monkeys or financial analysts: Who is worth your money? New evidence on informational inefficiencies in the U.S. stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Kin-Boon Tang & Shao-Jye Wong & Shih-Kuei Lin & Szu-Lang Liao, 2020. "Excess volatility and market efficiency in government bond markets: the ASEAN-5 context," Journal of Asset Management, Palgrave Macmillan, vol. 21(2), pages 154-165, March.
    5. Rompotis, Gerasimos G., 2011. "Testing weak-form efficiency of exchange traded funds market," MPRA Paper 36020, University Library of Munich, Germany.
    6. Kamal, Mona, 2014. "Studying the Validity of the Efficient Market Hypothesis (EMH) in the Egyptian Exchange (EGX) after the 25th of January Revolution," MPRA Paper 54708, University Library of Munich, Germany.
    7. Parthajit Kayal & Sayanti Mondal, 2020. "Speed of Price Adjustment in Indian Stock Market: A Paradox," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 453-476, December.
    8. Bianchi, Sergio & Pianese, Augusto, 2018. "Time-varying Hurst–Hölder exponents and the dynamics of (in)efficiency in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 64-75.
    9. Will, Matthias Georg, 2012. "Eine kurze Ideengeschichte der Kapitalmarkttheorie: Fundamentaldatenanalyse, Effizienzmarkthypothese und Behavioral Finance," Discussion Papers 2012-4, Martin Luther University of Halle-Wittenberg, Chair of Economic Ethics.
    10. Kofi A. Amoateng, 2019. "Did Tom Brady Save the US stock market? Market Anomaly or Market Efficiency?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(5), pages 128-128, May.
    11. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    12. Michael Heinrich Baumann, 2022. "Beating the market? A mathematical puzzle for market efficiency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 279-325, June.
    13. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Paresh Kumar Narayan & Russell Smyth, 2005. "Are OECD stock prices characterized by a random walk? Evidence from sequential trend break and panel data models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(8), pages 547-556.
    15. Azubuike Samuel Agbam, 2015. "Tests of Random Walk and Efficient Market Hypothesis in Developing Economies: Evidence from Nigerian Capital Market," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 5(1), pages 1-53.
    16. Al Janabi, Mazin A.M. & Hatemi-J, Abdulnasser & Irandoust, Manuchehr, 2010. "An empirical investigation of the informational efficiency of the GCC equity markets: Evidence from bootstrap simulation," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 47-54, January.
    17. Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
    18. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    19. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    20. Majumder, Debasish, 2013. "Towards an efficient stock market: Empirical evidence from the Indian market," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 572-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09928-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.