IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v19y2002i3p503-512.html
   My bibliography  Save this article

Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic

Author

Listed:
  • William V. Gehrlein

    (University of Delaware, Department of Business Administration, Newark, DE 19716, USA)

Abstract

A procedure is developed to obtain representations for the probability of election outcomes with the Impartial Anonymous Culture Condition and the Maximal Culture Condition. The procedure is based upon a process of performing arithmetic with integers, while maintaining absolute precision with very large integer numbers. The procedure is then used to develop probability representations for a number of different voting outcomes, which have to date been considered to be intractable to obtain with the use of standard algebraic techniques.

Suggested Citation

  • William V. Gehrlein, 2002. "Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(3), pages 503-512.
  • Handle: RePEc:spr:sochwe:v:19:y:2002:i:3:p:503-512
    Note: Received: 13 June 2000/Accepted: 22 January 2001
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00355/papers/2019003/20190503.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Lepelley & Ahmed Louichi & Hatem Smaoui, 2008. "On Ehrhart polynomials and probability calculations in voting theory," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(3), pages 363-383, April.
    2. Gehrlein, William V. & Moyouwou, Issofa & Lepelley, Dominique, 2013. "The impact of voters’ preference diversity on the probability of some electoral outcomes," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 352-365.
    3. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    4. Fabrice Barthélémy & Dominique Lepelley & Mathieu Martin, 2013. "On the likelihood of dummy players in weighted majority games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 263-279, July.
    5. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    6. William Gehrlein & Dominique Lepelley, 2009. "The Unexpected Behavior of Plurality Rule," Theory and Decision, Springer, vol. 67(3), pages 267-293, September.
    7. Achill Schürmann, 2013. "Exploiting polyhedral symmetries in social choice," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1097-1110, April.
    8. Abdelhalim El Ouafdi & Dominique Lepelley & Hatem Smaoui, 2020. "Probabilities of electoral outcomes: from three-candidate to four-candidate elections," Theory and Decision, Springer, vol. 88(2), pages 205-229, March.
    9. Eric Kamwa & Fabrice Valognes, 2017. "Scoring Rules and Preference Restrictions: The Strong Borda Paradox Revisited," Revue d'économie politique, Dalloz, vol. 127(3), pages 375-395.
    10. Sébastien Courtin & Mathieu Martin & Issofa Moyouwou, 2015. "The $$q$$ q -majority efficiency of positional rules," Theory and Decision, Springer, vol. 79(1), pages 31-49, July.
    11. Eric Kamwa, 2018. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Working Papers hal-01786590, HAL.
    12. Wilson, Mark C. & Pritchard, Geoffrey, 2007. "Probability calculations under the IAC hypothesis," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 244-256, December.
    13. Gehrlein, William V., 2004. "The effectiveness of weighted scoring rules when pairwise majority rule cycles exist," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 69-85, January.
    14. Cervone, Davide P. & Dai, Ronghua & Gnoutcheff, Daniel & Lanterman, Grant & Mackenzie, Andrew & Morse, Ari & Srivastava, Nikhil & Zwicker, William S., 2012. "Voting with rubber bands, weights, and strings," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 11-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:19:y:2002:i:3:p:503-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.