IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v16y1999i1p145-157.html
   My bibliography  Save this article

Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation

Author

Listed:
  • Kai-yuen Tsui

    (Department of Economics, Chinese University of Hong Kong, Shatin, Hong Kong)

Abstract

This paper generalizes the axiomatic approach to the design of income inequality measures to the multiattribute context. While the extension of most axioms considered desirable for inequality indices is straightforward, it is not entirely clear when a situation is more unequal than another when each person is characterised by a vector of attributes of well-being. We explore two majorization criteria which are partial orders ranking distributions of attributes by their degree of inequality. The two criteria are motivated by the Pigou-Dalton Transfer Principle in the unidimensional context and its equivalent formulation. These criteria gauge inequality loosely speaking with respect to the dispersion of the multidimensional distribution of the attributes. They, however, fail to address a different dimension of multivariate inequality pertaining to an increase in the correlation of the attributes. In this connection, this paper introduces a correlation-increasing majorization criterion proposed by Boland and Proschan (1988). Finally, in conjunction with other axioms commonly invoked in the literature on inequality, the majorization criteria lead inexorably to the class of multidimensional generalized entropy measures.

Suggested Citation

  • Kai-yuen Tsui, 1999. "Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(1), pages 145-157.
  • Handle: RePEc:spr:sochwe:v:16:y:1999:i:1:p:145-157
    Note: Received: 15 June 1995 / Accepted: 30 September 1997
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00355/papers/9016001/90160145.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stéphane Mussard, 2006. "La décomposition des mesures d’inégalité en sources de revenu : l’indice de Gini et les généralisations," Cahiers de recherche 06-05, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    2. Satya R. Chakravarty & Conchita D’Ambrosio, 2019. "The Measurement of Social Exclusion," Themes in Economics, in: Satya R. Chakravarty (ed.), Poverty, Social Exclusion and Stochastic Dominance, pages 167-189, Springer.
    3. Luc Savard & Stéphane Mussard, 2005. "Horizontal and Vertical Redistribution and Micro-simulation," Cahiers de recherche 05-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    4. Oliver Grothe & Fabian Kächele & Friedrich Schmid, 2022. "A multivariate extension of the Lorenz curve based on copulas and a related multivariate Gini coefficient," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(3), pages 727-748, September.
    5. Satya R. Chakravarty & Nachiketa Chattopadhyay & Conchita D’Ambrosio, 2022. "An Axiomatic Approach to the Measurement of Comparative Female Disadvantage," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(2), pages 747-772, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:16:y:1999:i:1:p:145-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.