IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v5y2024i4d10.1007_s43069-024-00389-7.html
   My bibliography  Save this article

A Hybrid Mathematical-Simulation Approach to Hospital Beds Capacity Optimization for COVID-19 Pandemic Conditions

Author

Listed:
  • Reza Maleki

    (University of Tehran)

  • Mohammadreza Taghizadeh-Yazdi

    (University of Tehran)

  • Rohollah Ghasemi

    (University of Tehran)

  • Samar Rivandi

    (University of Tehran)

Abstract

The COVID-19 pandemic was an unforeseen threat to human survival, and the efficiency of the health sector faced a severe challenge. The lack of hospital beds was one of the most critical concerns, and optimizing the capacity of hospital beds was considered one of the key issues. Due to the ageing of the population and the occasional occurrence of environmental and health crises, the demand for health services and the need for improved planning and administration are increasing daily. Therefore, the optimal allocation of hospital resources particularly the number of beds the essential criterion for a medical center’s capacity can substantially reduce patient waiting time and treatment costs, and improve services. An ideal multi-objective integer programming problem is presented in this study for optimizing the number of hospital beds and reducing costs of the length of stay and length of hospital stay. The problem also considers constraints relating to critical circumstances given the Corona’s prevalence. Moreover, the optimal answer is obtained using a simulation model mathematical optimization and a simulation-based optimization approach. The optimal value of the objective function was obtained at $90,516k for 1 month, with a productivity rate of 65%. In the simulation model, the waiting time was calculated to be 13,701.22 min in 1 month, whereas the mathematical model calculated it as 2230.8 min in the second period. These figures were instrumental in highlighting the efficiency of the bed allocation strategy under real-world conditions. The total cost for bed development and maintenance was estimated to range from $13k to $26.5k across the periods. Due to the ageing of the population and the occasional occurrence of environmental and health crises, the demand for health services and the need for improved planning and administration are increasing daily. Therefore, the optimal allocation of hospital resources, particularly the number of beds and the essential criterion for a medical center’s capacity, can substantially reduce patient waiting time and treatment costs and improve services. An ideal multi-objective integer programming problem is presented in this study for optimizing the number of hospital beds and reducing costs of the length of stay and length of hospital stay. The problem also considers constraints relating to critical circumstances, given the Corona’s prevalence. Moreover, the optimal answer is obtained using a simulation model, mathematical optimization, and a simulation-based optimization approach. For this purpose, mathematical modelling was used to minimize patients’ waiting time, hospitalizations, and maintenance costs of existing beds and purchasing a new bed. Following that, real-world conditions were introduced into the problem using the simulation model and information acquired from one month of hospitalization of patients during the Coronavirus outbreak at Imam Hussein Hospital in Tehran. After comparing mathematical and simulated models, the OptQuest simulation-based optimization technique revealed the ideal number of hospital beds.

Suggested Citation

  • Reza Maleki & Mohammadreza Taghizadeh-Yazdi & Rohollah Ghasemi & Samar Rivandi, 2024. "A Hybrid Mathematical-Simulation Approach to Hospital Beds Capacity Optimization for COVID-19 Pandemic Conditions," SN Operations Research Forum, Springer, vol. 5(4), pages 1-33, December.
  • Handle: RePEc:spr:snopef:v:5:y:2024:i:4:d:10.1007_s43069-024-00389-7
    DOI: 10.1007/s43069-024-00389-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00389-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00389-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anika Reichert & Rowena Jacobs, 2018. "The impact of waiting time on patient outcomes: Evidence from early intervention in psychosis services in England," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1772-1787, November.
    2. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander, 2017. "Optimization of hospital ward resources with patient relocation using Markov chain modeling," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1152-1163.
    3. G.J. Melman & A.K. Parlikad & E.A.B. Cameron, 2021. "Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation," Health Care Management Science, Springer, vol. 24(2), pages 356-374, June.
    4. Izadi, Ali & Shahafve, Masoomeh & Ahmadi, Pouria & Hanafizadeh, Pedram, 2023. "Design, and optimization of COVID-19 hospital wards to produce Oxygen and electricity through solar PV panels with hydrogen storage systems by neural network-genetic algorithm," Energy, Elsevier, vol. 263(PA).
    5. Weike Zhou & Aili Wang & Xia Wang & Robert A. Cheke & Yanni Xiao & Sanyi Tang, 2020. "Impact of Hospital Bed Shortages on the Containment of COVID-19 in Wuhan," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    6. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    7. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    8. Hummy Song & Anita L. Tucker & Ryan Graue & Sarah Moravick & Julius J. Yang, 2020. "Capacity Pooling in Hospitals: The Hidden Consequences of Off-Service Placement," Management Science, INFORMS, vol. 66(9), pages 3825-3842, September.
    9. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    10. A. Charnes & W. W. Cooper, 1957. "Management Models and Industrial Applications of Linear Programming," Management Science, INFORMS, vol. 4(1), pages 38-91, October.
    11. Ma, Xin & Zhao, Xue & Guo, Pengfei, 2022. "Cope with the COVID-19 pandemic: Dynamic bed allocation and patient subsidization in a public healthcare system," International Journal of Production Economics, Elsevier, vol. 243(C).
    12. Dorsaf Daldoul & Issam Nouaouri & Hanen Bouchriha & Hamid Allaoui, 2022. "Simulation‐based optimisation approach to improve emergency department resource planning: A case study of Tunisian hospital," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(5), pages 2727-2751, September.
    13. Barros, Oscar & Weber, Richard & Reveco, Carlos, 2021. "Demand analysis and capacity management for hospital emergencies using advanced forecasting models and stochastic simulation," Operations Research Perspectives, Elsevier, vol. 8(C).
    14. S Robinson, 2005. "Discrete-event simulation: from the pioneers to the present, what next?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 619-629, June.
    15. Laia Bosque-Mercader & Luigi Siciliani, 2023. "The association between bed occupancy rates and hospital quality in the English National Health Service," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(2), pages 209-236, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    2. Wang, Ziwei & Chen, Hongmin & Luo, Jun & Wang, Chunming & Xu, Xinyi & Zhou, Ying, 2024. "Sharing service in healthcare systems: A recent survey," Omega, Elsevier, vol. 129(C).
    3. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    4. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    5. Severino, Gonzalo & Rivera, José & Parot, Roberto & Otaegui, Ernesto & Fuentes, Andrés & Reszka, Pedro, 2024. "Workforce and task optimization to guarantee oxygen bottling under a COVID-19 pandemic scenario: A Chilean case study," International Journal of Production Economics, Elsevier, vol. 271(C).
    6. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    9. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    10. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    11. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    12. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    13. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    14. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    15. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    16. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    17. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    18. Ziming Liao & Chunlong Zhuang & Guangqin Huang & Hongyu Zhang & Shengbo Li & Xinyi Zhang & Lei Cheng & Fei Gan, 2024. "A Review of the Current Status and Prospects of Improving Indoor Environment for Lightweight Buildings in High-Altitude Cold Regions," Sustainability, MDPI, vol. 16(24), pages 1-27, December.
    19. Al Mindeel, T. & Spentzou, E. & Eftekhari, M., 2024. "Energy, thermal comfort, and indoor air quality: Multi-objective optimization review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    20. Mila Bravo & Dylan Jones & David Pla-Santamaria & Francisco Salas-Molina, 2022. "Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection," Operational Research, Springer, vol. 22(5), pages 5685-5706, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:4:d:10.1007_s43069-024-00389-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.