IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i4d10.1007_s43069-023-00248-x.html
   My bibliography  Save this article

TTOBench—an Open-Source Library for Train Trajectory Optimization

Author

Listed:
  • Dimitris Kouzoupis

    (Fachhochschule Nordwestschweiz (FHNW)
    ETH Zürich)

  • Ishan Pendharkar

    (Fachhochschule Nordwestschweiz (FHNW))

  • Francesco Corman

    (ETH Zürich)

Abstract

Over the past few years, the field of train trajectory optimization has been enriched with numerous publications proposing novel solution algorithms, solving known practical problems or applying existing methods to academic and industrial applications. However, the data that were used in the numerical experiments - especially those related to the railway infrastructure - are rarely public, making the comparison of different algorithms or the reproduction of any results difficult if not impossible. In this work, we try to bridge this gap by introducing a library of track data with slope and speed limit information as a first step towards an open-source benchmark suite for train trajectory optimization. The collected items were either publicly available in some form or acquired by the digitalization of published figures. We encourage authors in the field to contribute to this library for the common benefit of the community.

Suggested Citation

  • Dimitris Kouzoupis & Ishan Pendharkar & Francesco Corman, 2023. "TTOBench—an Open-Source Library for Train Trajectory Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-16, December.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00248-x
    DOI: 10.1007/s43069-023-00248-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00248-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00248-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goverde, Rob M.P. & Scheepmaker, Gerben M. & Wang, Pengling, 2021. "Pseudospectral optimal train control," European Journal of Operational Research, Elsevier, vol. 292(1), pages 353-375.
    2. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    3. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    2. Wang, Pengling & Goverde, Rob M.P., 2017. "Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 340-361.
    3. Huanhuan Lv & Yuzhao Zhang & Kang Huang & Xiaotong Yu & Jianjun Wu, 2019. "An Energy-Efficient Timetable Optimization Approach in a Bi-DirectionUrban Rail Transit Line: A Mixed-Integer Linear Programming Model," Energies, MDPI, vol. 12(14), pages 1-24, July.
    4. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    5. Yang, Songpo & Chen, Yanyan & Dong, Zhurong & Wu, Jianjun, 2023. "A collaborative operation mode of energy storage system and train operation system in power supply network," Energy, Elsevier, vol. 276(C).
    6. Gabriel Popa & Constantin Udriste & Ionel Tevy, 2021. "Train Bi-Control Problem on Riemannian Setting," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    7. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    8. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    9. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    10. Yang, Songpo & Liao, Feixiong & Wu, Jianjun & Timmermans, Harry J.P. & Sun, Huijun & Gao, Ziyou, 2020. "A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 85-113.
    11. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    12. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    13. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    15. Agostinho Rocha & Armando Araújo & Adriano Carvalho & João Sepulveda, 2018. "A New Approach for Real Time Train Energy Efficiency Optimization," Energies, MDPI, vol. 11(10), pages 1-21, October.
    16. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2017. "A comparison of performance metrics for balancing the power consumption of trains in a railway network by slight timetable adaptation," Public Transport, Springer, vol. 9(1), pages 95-113, July.
    17. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    18. Nersessian, David, 2018. "The law and ethics of big data analytics: A new role for international human rights in the search for global standards," Business Horizons, Elsevier, vol. 61(6), pages 845-854.
    19. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    20. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00248-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.