IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v2y2021i2d10.1007_s43069-021-00064-1.html
   My bibliography  Save this article

Outreach Strategies for Vaccine Distribution: A Multi-period Stochastic Modeling Approach

Author

Listed:
  • Yuwen Yang

    (University of Pittsburgh)

  • Jayant Rajgopal

    (University of Pittsburgh)

Abstract

Vaccination has been proven to be the most effective method to prevent infectious diseases. However, in many low- and middle-income countries with geographically dispersed and nomadic populations, last-mile vaccine delivery can be extremely complex. Because newborns in remote population centers often do not have direct access to clinics and hospitals, they face significant risk from diseases and infections. An approach known as outreach is typically utilized to raise immunization rates in these situations. A set of these remote locations is chosen, and over an appropriate planning period, teams of clinicians and support personnel are sent from a depot to set up mobile clinics at these locations to vaccinate people there and in the immediate surrounding area. In this paper, we model the problem of optimally designing outreach efforts as a mixed integer program that is a combination of a set covering problem and a vehicle routing problem. In addition, because elements relevant to outreach (such as populations and road conditions) are often unstable and unpredictable, we address uncertainty and determine the worst-case solutions. This is done using a multi-period stochastic modeling approach that considers updated model parameter estimates and revised plans for subsequent planning periods. We also conduct numerical experiments to provide insights on how demographic characteristics affect outreach planning and where outreach planners should focus their attention when gathering data.

Suggested Citation

  • Yuwen Yang & Jayant Rajgopal, 2021. "Outreach Strategies for Vaccine Distribution: A Multi-period Stochastic Modeling Approach," SN Operations Research Forum, Springer, vol. 2(2), pages 1-26, June.
  • Handle: RePEc:spr:snopef:v:2:y:2021:i:2:d:10.1007_s43069-021-00064-1
    DOI: 10.1007/s43069-021-00064-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-021-00064-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-021-00064-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    2. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    3. Yang, Yuwen & Bidkhori, Hoda & Rajgopal, Jayant, 2021. "Optimizing vaccine distribution networks in low and middle-income countries," Omega, Elsevier, vol. 99(C).
    4. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    5. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    6. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    7. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    8. Sheng-I Chen & Bryan A. Norman & Jayant Rajgopal & Tina M. Assi & Bruce Y. Lee & Shawn T. Brown, 2014. "A planning model for the WHO-EPI vaccine distribution network in developing countries," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 853-865, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Nathan Preuss & Lin Guo & Janet K. Allen & Farrokh Mistree, 2022. "Improving Patient Flow in a Primary Care Clinic," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    3. Wang, Xin & Jiang, Ruiwei & Qi, Mingyao, 2023. "A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply," Omega, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Guowei Hua & T. C. E. Cheng & Juliang Zhang, 2020. "Cold chain distribution: How to deal with node and arc time windows?," Annals of Operations Research, Springer, vol. 291(1), pages 1127-1151, August.
    2. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    5. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    6. Alcaraz, Juan J. & Caballero-Arnaldos, Luis & Vales-Alonso, Javier, 2019. "Rich vehicle routing problem with last-mile outsourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 263-286.
    7. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Gendreau, Michel & Dolgui, Alexandre & Meyer, Patrick, 2023. "Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand: The case study of COVID-19," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1249-1272.
    8. Naji-Azimi, Zahra & Salari, Majid & Renaud, Jacques & Ruiz, Angel, 2016. "A practical vehicle routing problem with desynchronized arrivals to depot," European Journal of Operational Research, Elsevier, vol. 255(1), pages 58-67.
    9. Nguyen, Phuong Khanh & Crainic, Teodor Gabriel & Toulouse, Michel, 2013. "A tabu search for Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 231(1), pages 43-56.
    10. Cheang, Brenda & Gao, Xiang & Lim, Andrew & Qin, Hu & Zhu, Wenbin, 2012. "Multiple pickup and delivery traveling salesman problem with last-in-first-out loading and distance constraints," European Journal of Operational Research, Elsevier, vol. 223(1), pages 60-75.
    11. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    12. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    13. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    14. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    15. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Tim Kammann & Michael H. Breitner, 2019. "Individually Optimized Commercial Road Transport: A Decision Support System for Customizable Routing Problems," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    16. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    17. Reil, Sebastian & Bortfeldt, Andreas & Mönch, Lars, 2018. "Heuristics for vehicle routing problems with backhauls, time windows, and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 266(3), pages 877-894.
    18. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    19. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    20. Gerhard Hiermann & Matthias Prandtstetter & Andrea Rendl & Jakob Puchinger & Günther Raidl, 2015. "Metaheuristics for solving a multimodal home-healthcare scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 89-113, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:2:y:2021:i:2:d:10.1007_s43069-021-00064-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.