IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v1y2020i3d10.1007_s43069-020-00023-2.html
   My bibliography  Save this article

Nutmeg: a MIP and CP Hybrid Solver Using Branch-and-Check

Author

Listed:
  • Edward Lam

    (Monash University)

  • Graeme Gange

    (Monash University)

  • Peter J. Stuckey

    (Monash University)

  • Pascal Hentenryck

    (Georgia Institute of Technology)

  • Jip J. Dekker

    (Monash University)

Abstract

This paper describes the implementation of Nutmeg, a solver that hybridizes mixed integer linear programming and constraint programming using the branch-and-cut style of logic-based Benders decomposition known as branch-and-check. Given a high-level constraint programming model, Nutmeg automatically derives a mixed integer programming master problem that omits global constraints with weak linear relaxations, and a constraint programming subproblem identical to the original model. At every node in the branch-and-bound search tree, the linear relaxation computes dual bounds and proposes solutions, which are checked for feasibility of the omitted constraints in the constraint programming subproblem. In the case of infeasibility, conflict analysis generates Benders cuts, which are appended to the linear relaxation to cut off the candidate solution. Experimental results show that Nutmeg’s automatic decomposition outperforms pure constraint programming and pure mixed integer programming on problems known to have successful implementations of logic-based Benders decomposition, but performs poorly on general problems, which lack specific decomposable structure. Nonetheless, Nutmeg outperforms the standalone approaches on one problem with no known decomposable structure, providing preliminary indications that a hand-tailored decomposition for this problem could be worthwhile. On the whole, Nutmeg serves as a valuable tool for novice modelers to try hybrid solving and for expert modelers to quickly compare different logic-based Benders decompositions of their problems.

Suggested Citation

  • Edward Lam & Graeme Gange & Peter J. Stuckey & Pascal Hentenryck & Jip J. Dekker, 2020. "Nutmeg: a MIP and CP Hybrid Solver Using Branch-and-Check," SN Operations Research Forum, Springer, vol. 1(3), pages 1-27, September.
  • Handle: RePEc:spr:snopef:v:1:y:2020:i:3:d:10.1007_s43069-020-00023-2
    DOI: 10.1007/s43069-020-00023-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-020-00023-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-020-00023-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aigerim Saken & Emil Karlsson & Stephen J. Maher & Elina Rönnberg, 2023. "Computational Evaluation of Cut-Strengthening Techniques in Logic-Based Benders’ Decomposition," SN Operations Research Forum, Springer, vol. 4(3), pages 1-53, September.
    2. Simon Emde & Shohre Zehtabian & Yann Disser, 2023. "Point-to-point and milk run delivery scheduling: models, complexity results, and algorithms based on Benders decomposition," Annals of Operations Research, Springer, vol. 322(1), pages 467-496, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nascimento, Paulo Jorge & Silva, Cristóvão & Antunes, Carlos Henggeler & Moniz, Samuel, 2024. "Optimal decomposition approach for solving large nesting and scheduling problems of additive manufacturing systems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 92-110.
    2. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    3. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    4. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    5. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).
    6. Guyon, O. & Lemaire, P. & Pinson, É. & Rivreau, D., 2010. "Cut generation for an integrated employee timetabling and production scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 557-567, March.
    7. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    8. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    9. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    10. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
    11. Karim Pérez Martínez & Yossiri Adulyasak & Raf Jans, 2022. "Logic-Based Benders Decomposition for Integrated Process Configuration and Production Planning Problems," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2177-2191, July.
    12. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    13. Amin Dehghanian & Yujia Xie & Nicoleta Serban, 2024. "Identifying Socially Optimal Equilibria Using Combinatorial Properties of Nash Equilibria in Bimatrix Games," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1261-1286, September.
    14. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    15. Kiho Seo & Seulgi Joung & Chungmok Lee & Sungsoo Park, 2022. "A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2804-2827, September.
    16. Siqian Shen & J. Smith, 2013. "A decomposition approach for solving a broadcast domination network design problem," Annals of Operations Research, Springer, vol. 210(1), pages 333-360, November.
    17. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    18. Defeng Sun & Lixin Tang & Roberto Baldacci & Zihan Chen, 2024. "A Decomposition Method for the Group-Based Quay Crane Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 543-570, March.
    19. Leonel Patrício & Lino Costa & Leonilde Varela & Paulo Ávila, 2023. "Sustainable Implementation of Robotic Process Automation Based on a Multi-Objective Mathematical Model," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
    20. Simon Emde & Shohre Zehtabian & Yann Disser, 2023. "Point-to-point and milk run delivery scheduling: models, complexity results, and algorithms based on Benders decomposition," Annals of Operations Research, Springer, vol. 322(1), pages 467-496, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:1:y:2020:i:3:d:10.1007_s43069-020-00023-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.