South African inflation modelling using bootstrapped long short-term memory methods
Author
Abstract
Suggested Citation
DOI: 10.1007/s43546-023-00490-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kevin S. Nell, 2018. "Re‐Examining the Role of Structural Change and Nonlinearities in a Phillips Curve Model for South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 86(2), pages 173-196, June.
- J.W. Fedderke & E. Schaling, 2005. "Modelling Inflation In South Africa: A Multivariate Cointegration Analysis," South African Journal of Economics, Economic Society of South Africa, vol. 73(1), pages 79-92, March.
- Geoffrey Woglom, 2003. "How Has Inflation Targeting Affected Monetary Policy in South Africa?," South African Journal of Economics, Economic Society of South Africa, vol. 71(2), pages 198-210, June.
- Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2016.
"Analyzing South Africa’s inflation persistence using an ARFIMA model with Markov-switching fractional differencing parameter,"
Journal of Developing Areas, Tennessee State University, College of Business, vol. 50(1), pages 47-57, January-M.
- Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2014. "Analysing South Africa's Inflation Persistence Using an ARFIMA Model with Markov-Switching Fractional Differencing Parameter," Working Papers 201440, University of Pretoria, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2014. "Analysing South Africa's Inflation Persistence Using an ARFIMA Model with Markov-Switching Fractional Differencing Parameter," Working Papers 15-09, Eastern Mediterranean University, Department of Economics.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dladla, Pholile & Malikane, Christopher, 2022. "Inflation dynamics in an emerging market: The case of South Africa," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 262-271.
- Naraidoo, Ruthira & Paya, Ivan, 2012.
"Forecasting monetary policy rules in South Africa,"
International Journal of Forecasting, Elsevier, vol. 28(2), pages 446-455.
- R Naraidoo & I Paya, 2010. "Forecasting Monetary Policy Rules in South Africa," Working Papers 611194, Lancaster University Management School, Economics Department.
- Adeola Oyenubi, 2019. "Who benefits from being self-employed in urban Ghana?," Working Papers 189, Economic Research Southern Africa.
- Marina Marinkov & Philippe Burger, 2006. "The South African Phillips Curve: How Applicable is the Gordon Model?," Working Papers 038, Economic Research Southern Africa.
- Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012.
"Short-run forecasting of the euro-dollar exchange rate with economic fundamentals,"
Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
- Marcos dal Bianco & Maximo Camacho & Gabriel Perez-Quiros, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Working Papers 1203, Banco de España.
- Maximo Camacho & Marcos Dal Bianco & Gabriel Perez Quiros, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Working Papers 1201, BBVA Bank, Economic Research Department.
- Gary Koop & Dimitris Korobilis, 2019.
"Forecasting with High‐Dimensional Panel VARs,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 937-959, October.
- Gary Koop & Dimitris Korobilis, 2015. "Forecasting With High Dimensional Panel VARs," Working Papers 2015_25, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis, 2018. "Forecasting with High-Dimensional Panel VARs," Working Paper series 18-20, Rimini Centre for Economic Analysis.
- Koop, G & Korobilis, D, 2018. "Forecasting with High-Dimensional Panel VARs," Essex Finance Centre Working Papers 21329, University of Essex, Essex Business School.
- Koop, Gary & Korobilis, Dimitris, 2015. "Forecasting with High-Dimensional Panel VARs," MPRA Paper 84275, University Library of Munich, Germany, revised 31 Jan 2018.
- Máximo Camacho & Rafael Doménech, 2012.
"MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting,"
SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
- Maximo Camacho & Rafael Domenech, 2010. "MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting," Working Papers 1021, BBVA Bank, Economic Research Department.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016.
"Forecasting US real private residential fixed investment using a large number of predictors,"
Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2013. "Forecasting the US Real Private Residential Fixed Investment Using Large Number of Predictors," Working Papers 201348, University of Pretoria, Department of Economics.
- Goodness C. Aye & Rangan Gupta & Stephen M. Miller & Mehmet Balcilar, 2014. "Forecasting US Real Private Residential Fixed Investment Using a Large Number of Predictors," Working papers 2014-10, University of Connecticut, Department of Economics.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015.
"The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US,"
Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 201226, University of Pretoria, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 1209, University of Nevada, Las Vegas , Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working papers 2012-12, University of Connecticut, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working Papers 15-27, Eastern Mediterranean University, Department of Economics.
- Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
- Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
- Massimiliano Marzo & Paolo Zagaglia, 2010.
"Volatility forecasting for crude oil futures,"
Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
- Marzo, Massimiliano & Zagaglia, Paolo, 2007. "Volatility forecasting for crude oil futures," Research Papers in Economics 2007:9, Stockholm University, Department of Economics.
- Vincent Dadam & Nicola Viegi, 2021.
"Estimating a New Keynesian Wage Phillips Curve,"
Working Papers
202107, University of Pretoria, Department of Economics.
- Nicola Viegi & Vincent Dadam, 2021. "Estimating a New Keynesian Wage Phillips Curve," Working Papers 847, Economic Research Southern Africa.
- Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
- Vosen, Simeon & Schmidt, Torsten, 2012.
"A monthly consumption indicator for Germany based on Internet search query data,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
- Simeon Vosen & Torsten Schmidt, 2012. "A monthly consumption indicator for Germany based on Internet search query data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(7), pages 683-687, May.
- Schmidt, Torsten & Vosen, Simeon, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 208, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
More about this item
Keywords
Inflation; ARFIMA; GARCH; GJR–GARCH; LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:3:y:2023:i:7:d:10.1007_s43546-023-00490-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.