IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v23y2020i3d10.1007_s11203-020-09211-7.html
   My bibliography  Save this article

Optimal iterative threshold-kernel estimation of jump diffusion processes

Author

Listed:
  • José E. Figueroa-López

    (Washington University in St. Louis)

  • Cheng Li

    (Citadel Securities)

  • Jeffrey Nisen

    (Barclays)

Abstract

In this paper, we propose a new threshold-kernel jump-detection method for jump-diffusion processes, which iteratively applies thresholding and kernel methods in an approximately optimal way to achieve improved finite-sample performance. As in Figueroa-López and Nisen (Stoch Process Appl 123(7):2648–2677, 2013), we use the expected number of jump misclassifications as the objective function to optimally select the threshold parameter of the jump detection scheme. We prove that the objective function is quasi-convex and obtain a new second-order infill approximation of the optimal threshold in closed form. The approximate optimal threshold depends not only on the spot volatility $$\sigma _t$$ σ t , but also the jump intensity and the value of the jump density at the origin. Estimation methods for these quantities are then developed, where the spot volatility is estimated by a kernel estimator with thresholding and the value of the jump density at the origin is estimated by a density kernel estimator applied to those increments deemed to contain jumps by the chosen thresholding criterion. Due to the interdependency between the model parameters and the approximate optimal estimators built to estimate them, a type of iterative fixed-point algorithm is developed to implement them. Simulation studies for a prototypical stochastic volatility model show that it is not only feasible to implement the higher-order local optimal threshold scheme but also that this is superior to those based only on the first order approximation and/or on average values of the parameters over the estimation time period.

Suggested Citation

  • José E. Figueroa-López & Cheng Li & Jeffrey Nisen, 2020. "Optimal iterative threshold-kernel estimation of jump diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 517-552, October.
  • Handle: RePEc:spr:sistpr:v:23:y:2020:i:3:d:10.1007_s11203-020-09211-7
    DOI: 10.1007/s11203-020-09211-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09211-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09211-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    4. repec:hal:journl:peer-00741630 is not listed on IDEAS
    5. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    6. Foster, Dean P & Nelson, Daniel B, 1996. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," Econometrica, Econometric Society, vol. 64(1), pages 139-174, January.
    7. Figueroa-López, José E. & Li, Cheng, 2020. "Optimal kernel estimation of spot volatility of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4693-4720.
    8. Figueroa-López, José E. & Mancini, Cecilia, 2019. "Optimum thresholding using mean and conditional mean squared error," Journal of Econometrics, Elsevier, vol. 208(1), pages 179-210.
    9. Jing, Bing-Yi & Kong, Xin-Bing & Liu, Zhi & Mykland, Per, 2012. "On the jump activity index for semimartingales," Journal of Econometrics, Elsevier, vol. 166(2), pages 213-223.
    10. Kristensen, Dennis, 2010. "Nonparametric Filtering Of The Realized Spot Volatility: A Kernel-Based Approach," Econometric Theory, Cambridge University Press, vol. 26(1), pages 60-93, February.
    11. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    12. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
    13. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2023. "Inference of Binary Regime Models with Jump Discontinuities," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 49-86, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
    2. Jos'e E. Figueroa-L'opez & Cheng Li & Jeffrey Nisen, 2018. "Optimal Iterative Threshold-Kernel Estimation of Jump Diffusion Processes," Papers 1811.07499, arXiv.org, revised Apr 2020.
    3. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    4. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    5. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    6. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    7. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.
    8. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    9. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    10. Figueroa-López, José E. & Li, Cheng, 2020. "Optimal kernel estimation of spot volatility of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4693-4720.
    11. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    12. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    13. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    14. B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2023. "Data-driven fixed-point tuning for truncated realized variations," Papers 2311.00905, arXiv.org, revised Oct 2024.
    15. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    16. Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
    18. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    19. Zhang, Congshan & Li, Jia & Bollerslev, Tim, 2022. "Occupation density estimation for noisy high-frequency data," Journal of Econometrics, Elsevier, vol. 227(1), pages 189-211.
    20. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:23:y:2020:i:3:d:10.1007_s11203-020-09211-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.