Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails
Author
Abstract
Suggested Citation
DOI: 10.1007/s11203-020-09210-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ngoc Khue Tran, 2017. "LAN property for an ergodic Ornstein–Uhlenbeck process with Poisson jumps," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(16), pages 7942-7968, August.
- Masuda, Hiroki, 2019. "Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 1013-1059.
- Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.
- Shibin Zhang & Xinsheng Zhang, 2013. "A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 89-103, February.
- Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
- Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
- Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
- Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
- Yanfeng Wu & Jianqiang Hu & Xiangyu Yang, 2022. "Moment estimators for parameters of Lévy‐driven Ornstein–Uhlenbeck processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 610-639, July.
- Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
- Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
- Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
- Zhang, Xuekang & Yi, Haoran & Shu, Huisheng, 2019. "Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 8-16.
- Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
- Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
- Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
- Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
- Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Zhao, Huiyan & Zhang, Chongqi, 2019. "Minimum distance parameter estimation for SDEs with small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 301-311.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Wang, Xiaolong & Feng, Jing & Liu, Qi & Li, Yongge & Xu, Yong, 2022. "Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Mohamed Ben Alaya & Ahmed Kebaier & Ngoc Khue Tran, 2020. "Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1401-1464, December.
- Reiichiro Kawai, 2013. "Local Asymptotic Normality Property for Ornstein–Uhlenbeck Processes with Jumps Under Discrete Sampling," Journal of Theoretical Probability, Springer, vol. 26(4), pages 932-967, December.
- Yurong Pan & Litan Yan, 2019. "The Least Squares Estimation for the α-Stable Ornstein-Uhlenbeck Process with Constant Drift," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1165-1182, December.
More about this item
Keywords
Lévy process; Ornstein–Uhlenbeck type process; Local asymptotic mixed normality; Heavy tails; Regular variation; Maximum likelihood estimator; Asymptotic observed information;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:23:y:2020:i:3:d:10.1007_s11203-020-09210-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.