IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v23y2020i2d10.1007_s11203-020-09209-1.html
   My bibliography  Save this article

Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem

Author

Listed:
  • Yaroslav Eumenius-Schulz

    (LPSM-UPMC)

Abstract

There has been an increasing interest for rough stochastic volatility models. However, little is known about the statistical inference for such models, especially for high frequency data. This paper investigates estimation of the fractional spot volatility from discrete observations of the price process on a grid with a time interval $$\Delta _n\rightarrow 0$$ Δ n → 0 as $$n\rightarrow \infty $$ n → ∞ . Namely, the model with fractional Ornstein–Uhlenbeck log-volatility and Itô-semimartingale log-price processes is considered. In this setup both consistency and central limit theorem are proven for truncated and non-truncated spot volatility estimators. Then, asymptotic confidence intervals are derived for a finite number of spot volatility estimators at different estimation times. Consequently, the highest possible rate of convergence achieved in the central limit theorem $$\Delta _n^{H/(2H+1)}$$ Δ n H / ( 2 H + 1 ) is a function of the Hurst parameter H of the fractional Brownian motion driving the volatility. This rate coincides with the already known highest convergence rate for the Brownian case when $$H=0.5$$ H = 0.5 . Furthermore, simulations in this paper validate the consistency and central limit theorem numerically. Article class.

Suggested Citation

  • Yaroslav Eumenius-Schulz, 2020. "Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 355-380, July.
  • Handle: RePEc:spr:sistpr:v:23:y:2020:i:2:d:10.1007_s11203-020-09209-1
    DOI: 10.1007/s11203-020-09209-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09209-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09209-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. C. Bayer & P. K. Friz & A. Gulisashvili & B. Horvath & B. Stemper, 2019. "Short-time near-the-money skew in rough fractional volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 779-798, May.
    4. Jos'e E. Figueroa-L'opez & Cheng Li, 2016. "Optimal Kernel Estimation of Spot Volatility of Stochastic Differential Equations," Papers 1612.04507, arXiv.org.
    5. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    6. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    2. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    3. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    4. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    5. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    6. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    7. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    8. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    9. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    10. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    11. Markus Bibinger, 2024. "Probabilistic models and statistics for electronic financial markets in the digital age," Papers 2406.07388, arXiv.org.
    12. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    13. Carsten H. Chong & Viktor Todorov, 2022. "Short-time expansion of characteristic functions in a rough volatility setting with applications," Papers 2208.00830, arXiv.org, revised Nov 2024.
    14. Paul Hager & Eyal Neuman, 2020. "The Multiplicative Chaos of $H=0$ Fractional Brownian Fields," Papers 2008.01385, arXiv.org.
    15. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.
    16. Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    17. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Sep 2023.
    18. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    19. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    20. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:23:y:2020:i:2:d:10.1007_s11203-020-09209-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.