IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v14y2011i3p255-271.html
   My bibliography  Save this article

On compound Poisson processes arising in change-point type statistical models as limiting likelihood ratios

Author

Listed:
  • Sergueï Dachian
  • Ilia Negri

Abstract

No abstract is available for this item.

Suggested Citation

  • Sergueï Dachian & Ilia Negri, 2011. "On compound Poisson processes arising in change-point type statistical models as limiting likelihood ratios," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 255-271, October.
  • Handle: RePEc:spr:sistpr:v:14:y:2011:i:3:p:255-271
    DOI: 10.1007/s11203-011-9059-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-011-9059-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-011-9059-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ciuperca Gabriela, 2004. "Maximum likelihood estimator in a two-phase nonlinear random regression model," Statistics & Risk Modeling, De Gruyter, vol. 22(4), pages 335-349, April.
    2. Fujii, Takayuki, 2007. "A note on the asymptotic distribution of the maximum likelihood estimator in a non-regular case," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1622-1627, October.
    3. Reinhard Höpfner & Yury Kutoyants, 2010. "Estimating discontinuous periodic signals in a time inhomogeneous diffusion," Statistical Inference for Stochastic Processes, Springer, vol. 13(3), pages 193-230, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergueï Dachian & Lin Yang, 2015. "On a Poissonian change-point model with variable jump size," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 127-150, July.
    2. Alexander Gushchin & Nino Kordzakhia & Alexander Novikov, 2018. "Translation invariant statistical experiments with independent increments," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 363-383, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Takayuki, 2008. "On weak convergence of the likelihood ratio process in multi-phase regression models," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2066-2074, October.
    2. Dominique Dehay, 2015. "Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 69-98, April.
    3. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    4. Herold Dehling & Brice Franke & Thomas Kott & Reg Kulperger, 2014. "Change point testing for the drift parameters of a periodic mean reversion process," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 1-18, April.
    5. Oçafrain, William, 2020. "Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3445-3476.
    6. Dehay, D. & El Waled, K., 2013. "Nonparametric estimation problem for a time-periodic signal in a periodic noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 608-615.
    7. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    8. Vlad Stefan Barbu & Slim Beltaief & Sergey Pergamenshchikov, 2019. "Robust adaptive efficient estimation for semi-Markov nonparametric regression models," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 187-231, July.
    9. Simon Holbach, 2018. "Local asymptotic normality for shape and periodicity in the drift of a time inhomogeneous diffusion," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 527-538, October.
    10. Ciuperca, Gabriela, 2009. "The M-estimation in a multi-phase random nonlinear model," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 573-580, March.
    11. Zhang, Xuekang & Huang, Chengzhe & Deng, Shounian, 2024. "Nonparametric estimation for periodic stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 214(C).
    12. Sévérien Nkurunziza & Pei Patrick Zhang, 2018. "Estimation and testing in generalized mean-reverting processes with change-point," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 191-215, April.
    13. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    14. R. Z. Khasminskii & N. V. Krylov, 2022. "On the asymptotic behavior of solutions of the Cauchy problem for parabolic equations with time periodic coefficients," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 3-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:14:y:2011:i:3:p:255-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.