Local Whittle likelihood estimators and tests for non-Gaussian stationary processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s11203-010-9044-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle estimation of ARCH models," LSE Research Online Documents on Economics 316, London School of Economics and Political Science, LSE Library.
- Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(3), pages 608-631, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," Post-Print halshs-00375758, HAL.
- Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
- Peter M Robinson & Paolo Zaffaroni, 2005. "Pseudo-Maximum Likelihood Estimation of ARCH(8) Models," STICERD - Econometrics Paper Series 495, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Abdou Kâ Diongue & Dominique Guegan, 2008.
"Estimation of k-factor GIGARCH process : a Monte Carlo study,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-00235179, HAL.
- Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process : a Monte Carlo study," Post-Print halshs-00235179, HAL.
- Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process: a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08004, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00375758, HAL.
- Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," PSE-Ecole d'économie de Paris (Postprint) halshs-00375758, HAL.
- Zhang, Xinyu & Tong, Howell, 2022. "Asymptotic theory of principal component analysis for time series data with cautionary comments," LSE Research Online Documents on Economics 113566, London School of Economics and Political Science, LSE Library.
- Xinyu Zhang & Howell Tong, 2022. "Asymptotic theory of principal component analysis for time series data with cautionary comments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 543-565, April.
- Wei, Honglei & Zhang, Hongfan & Jiang, Hui & Huang, Lei, 2022. "On the semi-varying coefficient dynamic panel data model with autocorrelated errors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Robinson, Peter M. & Zaffaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH(∞) models," LSE Research Online Documents on Economics 58182, London School of Economics and Political Science, LSE Library.
- Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2003. "LARCH, leverage and long memory," LSE Research Online Documents on Economics 2020, London School of Economics and Political Science, LSE Library.
- Abdou Kâ Diongue & Dominique Guegan, 2004. "Estimating parameters for a k-GIGARCH process," Post-Print halshs-00188531, HAL.
- repec:hum:wpaper:sfb649dp2006-033 is not listed on IDEAS
- Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
- Polzehl, Jörg & Spokoiny, Vladimir, 2006. "Varying coefficient GARCH versus local constant volatility modeling: Comparison of the predictive power," SFB 649 Discussion Papers 2006-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Joao Jesus & Richard E. Chandler, 2017. "Inference with the Whittle Likelihood: A Tractable Approach Using Estimating Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 204-224, March.
- Todd Prono, 2016. "Closed-Form Estimation of Finite-Order ARCH Models: Asymptotic Theory and Finite-Sample Performance," Finance and Economics Discussion Series 2016-083, Board of Governors of the Federal Reserve System (U.S.).
- Robinson, Peter M. & Zafaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH models," LSE Research Online Documents on Economics 4544, London School of Economics and Political Science, LSE Library.
- Xuejie Feng & Chiping Zhang, 2020. "A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 1021-1044, March.
- Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
- Huang, Da & Wang, Hansheng & Yao, Qiwei, 2008. "Estimating GARCH models: when to use what?," LSE Research Online Documents on Economics 5398, London School of Economics and Political Science, LSE Library.
- Royer, Julien, 2021. "Conditional asymmetry in Power ARCH($\infty$) models," MPRA Paper 109118, University Library of Munich, Germany.
- Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series 460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
More about this item
Keywords
Non-Gaussian linear process; Local Whittle likelihood estimator; Spectral density; Local likelihood ratio test; Primary 62G07; 62M15; Secondary 62G10; 62G20;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:13:y:2010:i:3:p:163-174. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.