IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v98y2014i2d10.1007_s11192-013-1142-1.html
   My bibliography  Save this article

The impact of small world on patent productivity in China

Author

Listed:
  • Gupeng Zhang

    (University of Chinese Academy of Science)

  • Jiancheng Guan

    (University of Chinese Academy of Science)

  • Xielin Liu

    (University of Chinese Academy of Science)

Abstract

Based on the patent co-authorship data from State Intellectual Property Office of China, this paper examines the evolution of small world network and its impact on patent productivity in China. Compared with the western countries, the small-world phenomenon of the innovation network in China is becoming more obvious. Empirical result shows that the small world network may only have significant impact on patent productivity in those patent productive provinces, e.g., Beijing and Guangdong that filed larger number of patents. Although the collaborations in the network are more endurable in China than ones in western countries, it may be less efficient in transmitting knowledge because of large ratio of administration oriented state owned enterprises (SOEs). With larger ratio of SOEs, the small world network has longer path length and knowledge thus flows less efficiently in Beijing than in Guangdong. The policy implication of the findings lies in that the Chinese government should let the market rather than the administration determine the collaboration of technological innovation, in order to encourage innovation and establish an effective small world network for speeding up flow of knowledge among different type of firms during the innovative process.

Suggested Citation

  • Gupeng Zhang & Jiancheng Guan & Xielin Liu, 2014. "The impact of small world on patent productivity in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 945-960, February.
  • Handle: RePEc:spr:scient:v:98:y:2014:i:2:d:10.1007_s11192-013-1142-1
    DOI: 10.1007/s11192-013-1142-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1142-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1142-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes-Casseres, Benjamin & Hagedoorn, John & Jaffe, Adam B., 2006. "Do alliances promote knowledge flows?," Journal of Financial Economics, Elsevier, vol. 80(1), pages 5-33, April.
    2. Li, Shaomin & Xia, Jun, 2008. "The Roles and Performance of State Firms and Non-State Firms in China's Economic Transition," World Development, Elsevier, vol. 36(1), pages 39-54, January.
    3. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    4. Joel A. C. Baum & Tony Calabrese & Brian S. Silverman, 2000. "Don't go it alone: alliance network composition and startups' performance in Canadian biotechnology," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 267-294, March.
    5. Weijan Shan & Gordon Walker & Bruce Kogut, 1994. "Interfirm cooperation and startup innovation in the biotechnology industry," Strategic Management Journal, Wiley Blackwell, vol. 15(5), pages 387-394, June.
    6. Zifeng Chen & Jiancheng Guan, 2011. "Mapping of biotechnology patents of China from 1995–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 73-89, July.
    7. Wang, Yue & Tanaka, Akira, 2011. "From hierarchy to hybrid: The evolving nature of inter-firm governance in China's automobile groups," Journal of Business Research, Elsevier, vol. 64(1), pages 74-80, January.
    8. Sidonia Proff & Anja Dettmann, 2013. "Inventor collaboration over distance: a comparison of academic and corporate patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1217-1238, March.
    9. Anja Dettmann & Sidonia von Proff, 2010. "Inventor collaboration over distance – a comparison of academic and corporate patents," Working Papers on Innovation and Space 2010-01, Philipps University Marburg, Department of Geography.
    10. Ranjay Gulati & Maxim Sytch & Adam Tatarynowicz, 2012. "The Rise and Fall of Small Worlds: Exploring the Dynamics of Social Structure," Organization Science, INFORMS, vol. 23(2), pages 449-471, April.
    11. Shih, Hsin-Yu & Chang, Pao-Long, 2009. "Industrial innovation networks in Taiwan and China: A comparative analysis," Technology in Society, Elsevier, vol. 31(2), pages 176-186.
    12. Jennifer H. Chen & Show-Ling Jang & Chiao-Hui Chang, 2013. "The patterns and propensity for international co-invention: the case of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 481-495, February.
    13. Shiu-Wan Hung & An-Pang Wang, 2010. "Examining the small world phenomenon in the patent citation network: a case study of the radio frequency identification (RFID) network," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 121-134, January.
    14. Xia Gao & Jiancheng Guan & Ronald Rousseau, 2011. "Mapping collaborative knowledge production in China using patent co-inventorships," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 343-362, August.
    15. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    16. Lee Fleming & Charles King & Adam I. Juda, 2007. "Small Worlds and Regional Innovation," Organization Science, INFORMS, vol. 18(6), pages 938-954, December.
    17. Lennart Björneborn, 2006. "'Mini small worlds' of shortest link paths crossing domain boundaries in an academic Web space," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 395-414, September.
    18. Chen, Zifeng & Guan, Jiancheng, 2010. "The impact of small world on innovation: An empirical study of 16 countries," Journal of Informetrics, Elsevier, vol. 4(1), pages 97-106.
    19. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    20. Freeman, C., 1991. "Networks of innovators: A synthesis of research issues," Research Policy, Elsevier, vol. 20(5), pages 499-514, October.
    21. Jiancheng Guan & Yuan Shi, 2012. "Transnational citation, technological diversity and small world in global nanotechnology patenting," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 609-633, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Li & Li, Jun & Li, Jian, 2020. "Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    2. Xu Bai & Jinxi Wu & Yun Liu & Yihan Xu, 2020. "Research on the impact of global innovation network on 3D printing industry performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1015-1051, August.
    3. Zhang, Gupeng & Duan, Hongbo & Zhou, Jianghua, 2017. "Network stability, connectivity and innovation output," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 339-349.
    4. Deyun Yin & Kazuyuki Motohashi & Jianwei Dang, 2020. "Large-scale name disambiguation of Chinese patent inventors (1985–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 765-790, February.
    5. Chongfeng Wang & Gupeng Zhang, 2019. "Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 561-593, May.
    6. Haining Jiang & Wenzhong Zhang & Jian Duan, 2020. "Location Choice of Overseas High-Level Young Returned Talents in China," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    7. Qinchang Gui & Chengliang Liu & DeBin Du, 2019. "The Structure and Dynamic of Scientific Collaboration Network among Countries along the Belt and Road," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    8. YIN Deyun & MOTOHASHI Kazuyuki, 2018. "Inventor Name Disambiguation with Gradient Boosting Decision Tree and Inventor Mobility in China (1985-2016)," Discussion papers 18018, Research Institute of Economy, Trade and Industry (RIETI).
    9. Mingbo Sun & Xueqing Zhang & Xiaoxiao Zhang, 2022. "The Impact of a Multilevel Innovation Network and Government Support on Innovation Performance—An Empirical Study of the Chengdu–Chongqing City Cluster," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    10. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongfeng Wang & Gupeng Zhang, 2019. "Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 561-593, May.
    2. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    3. Pinto, Pablo E. & Vallone, Andres & Honores, Guillermo, 2019. "The structure of collaboration networks: Findings from three decades of co-invention patents in Chile," Journal of Informetrics, Elsevier, vol. 13(4).
    4. Guan, Jiancheng & Zhang, Jingjing & Yan, Yan, 2015. "The impact of multilevel networks on innovation," Research Policy, Elsevier, vol. 44(3), pages 545-559.
    5. Stefan Töpfer & Uwe Cantner & Holger Graf, 2019. "Structural dynamics of innovation networks in German Leading-Edge Clusters," The Journal of Technology Transfer, Springer, vol. 44(6), pages 1816-1839, December.
    6. Chen, Kaihua & Zhang, Yi & Zhu, Guilong & Mu, Rongping, 2020. "Do research institutes benefit from their network positions in research collaboration networks with industries or/and universities?," Technovation, Elsevier, vol. 94.
    7. Dolores Modic & Borut Lužar & Tohru Yoshioka-Kobayashi, 2023. "Structure of university licensing networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 901-932, February.
    8. Yi Zhang & Kaihua Chen & Guilong Zhu & Richard C. M. Yam & Jiancheng Guan, 2016. "Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1383-1415, September.
    9. Carayol, Nicolas & Bergé, Laurent & Cassi, Lorenzo & Roux, Pascale, 2019. "Unintended triadic closure in social networks: The strategic formation of research collaborations between French inventors," Journal of Economic Behavior & Organization, Elsevier, vol. 163(C), pages 218-238.
    10. Miguélez, Ernest & Moreno, Rosina, 2015. "Knowledge flows and the absorptive capacity of regions," Research Policy, Elsevier, vol. 44(4), pages 833-848.
    11. Ernest Miguélez & Rosina Moreno, 2013. "“Mobility, networks and innovation: The role of regions’ absorptive capacity”," IREA Working Papers 201316, University of Barcelona, Research Institute of Applied Economics, revised Oct 2013.
    12. Uwe Cantner & Holger Graf, 2011. "Innovation Networks: Formation, Performance and Dynamics," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 15, Edward Elgar Publishing.
    13. Gräbner, Claudius & Heinrich, Torsten & Kudic, Muhamed, 2016. "Structuration processes in complex dynamic systems - an overview and reassessment," MPRA Paper 69095, University Library of Munich, Germany.
    14. Ruling Zhang & Killian J. McCarthy & Xiao Wang & Zengrui Tian, 2021. "How Does Network Structure Impact Follow-On Financing through Syndication? Evidence from the Renewable Energy Industry," Sustainability, MDPI, vol. 13(7), pages 1-23, April.
    15. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    16. Zhang, Gupeng & Duan, Hongbo & Zhou, Jianghua, 2017. "Network stability, connectivity and innovation output," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 339-349.
    17. Umut Yilmaz Cetinkaya & Erkan Erdil, 2016. "Cohesion and Competition of Europe: Innovation Policy from the Perspective of Networks and Entropy," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 10(4), pages 7-24.
    18. Ernest Miguélez & Rosina Moreno, 2013. "Skilled labour mobility, networks and knowledge creation in regions: a panel data approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 51(1), pages 191-212, August.
    19. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    20. Aarstad, Jarle & Ness, Håvard & Haugland, Sven A., 2015. "Innovation, uncertainty, and inter-firm shortcut ties in a tourism destination context," Tourism Management, Elsevier, vol. 48(C), pages 354-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:98:y:2014:i:2:d:10.1007_s11192-013-1142-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.