IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v70y2007i1d10.1007_s11192-007-0110-z.html
   My bibliography  Save this article

Probabilities for encountering genius, basic, ordinary or insignificant papers based on the cumulative nth citation distribution

Author

Listed:
  • Leo Egghe

    (Universiteit Hasselt (UHasselt)
    Universiteit Antwerpen (UA))

Abstract

This article calculates probabilities for the occurrence of different types of papers such as genius papers, basic papers, ordinary papers or insignificant papers. The basis of these calculations are the formulae for the cumulative nth citation distribution, being the cumulative distribution of times at which articles receive their nth(n = 1,2,3,...) citation. These formulae (proved in previous papers) are extended to allow for different aging rates of the papers. These new results are then used to define different importance classes of papers according to the different values of n, in function of time t. Examples are given in case of a classification into four parts: genius papers, basic papers, ordinary papers and (almost) insignificant papers. The fact that, in these examples, the size of each class is inversely related to the importance of the journals in this class is proved in a general mathematical context in which we have an arbitrary number of classes and where the threshold values of n in each class are defined according to the natural law of Weber-Fechner.

Suggested Citation

  • Leo Egghe, 2007. "Probabilities for encountering genius, basic, ordinary or insignificant papers based on the cumulative nth citation distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 167-181, January.
  • Handle: RePEc:spr:scient:v:70:y:2007:i:1:d:10.1007_s11192-007-0110-z
    DOI: 10.1007/s11192-007-0110-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-0110-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-0110-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe, 2000. "A Heuristic Study of the First-Citation Distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 48(3), pages 345-359, July.
    2. Wolfgang Glänzel & Balázs Schlemmer & Bart Thijs, 2003. "Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 571-586, November.
    3. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    4. Quentin L. Burrell, 2005. "Are “Sleeping Beauties” to be expected?," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(3), pages 381-389, December.
    5. Quentin L. Burrell, 2002. "The nth-citation distribution and obsolescence," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(3), pages 309-323, March.
    6. Quentin L. Burrel, 2001. "Stochastic modelling of the first-citation distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(1), pages 3-12, September.
    7. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    2. J Mingers, 2008. "Exploring the dynamics of journal citations: Modelling with s-curves," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1013-1025, August.
    3. Saralees Nadarajah & Samuel Kotz, 2007. "Models for citation behavior," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(2), pages 291-305, August.
    4. Mingyang Wang & Guang Yu & Shuang An & Daren Yu, 2012. "Discovery of factors influencing citation impact based on a soft fuzzy rough set model," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 635-644, December.
    5. Jiang Li, 2014. "Citation curves of “all-elements-sleeping-beauties”: “flash in the pan” first and then “delayed recognition”," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 595-601, August.
    6. Jonathan M. Levitt & Mike Thelwall, 2009. "The most highly cited Library and Information Science articles: Interdisciplinarity, first authors and citation patterns," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 45-67, January.
    7. Jonathan M. Levitt & Mike Thelwall, 2008. "Patterns of annual citation of highly cited articles and the prediction of their citation ranking: A comparison across subjects," Scientometrics, Springer;Akadémiai Kiadó, vol. 77(1), pages 41-60, October.
    8. You Song & Fangling Situ & Hongjun Zhu & Jinzhi Lei, 2018. "To be the Prince to wake up Sleeping Beauty: the rediscovery of the delayed recognition studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 9-24, October.
    9. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    10. Thomas Heinze, 2013. "Creative accomplishments in science: definition, theoretical considerations, examples from science history, and bibliometric findings," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 927-940, June.
    11. Hu, Zewen & Wu, Yishan, 2014. "Regularity in the time-dependent distribution of the percentage of never-cited papers: An empirical pilot study based on the six journals," Journal of Informetrics, Elsevier, vol. 8(1), pages 136-146.
    12. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    13. Li, Jiang & Shi, Dongbo & Zhao, Star X. & Ye, Fred Y., 2014. "A study of the “heartbeat spectra” for “sleeping beauties”," Journal of Informetrics, Elsevier, vol. 8(3), pages 493-502.
    14. Rodrigo Costas & Thed N. Leeuwen & Anthony F. J. Raan, 2011. "The “Mendel syndrome” in science: durability of scientific literature and its effects on bibliometric analysis of individual scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 177-205, October.
    15. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    16. Quentin L. Burrell, 2014. "The individual author’s publication–citation process: theory and practice," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 725-742, January.
    17. Finardi, Ugo, 2014. "On the time evolution of received citations, in different scientific fields: An empirical study," Journal of Informetrics, Elsevier, vol. 8(1), pages 13-24.
    18. Jian Wang, 2013. "Citation time window choice for research impact evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 851-872, March.
    19. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
    20. András Schubert & Wolfgang Glänzel & Gábor Schubert, 2022. "Eponyms in science: famed or framed?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1199-1207, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:70:y:2007:i:1:d:10.1007_s11192-007-0110-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.