IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v61y2004i3d10.1023_bscie.0000045113.27221.bf.html
   My bibliography  Save this article

A comparative study of patenting activity in U.S. and Brazilian scientific institutions

Author

Listed:
  • Rita Pinheiro-Machado

    (Divisão de Química Orgânica e Biotechnologia, Centro)

  • P. L. Oliveira

    (Department of Medical Biochemistry)

Abstract

Patents generated from scientific research indicate academic involvement in technology development. Academic patenting activity is recent, even in developed countries. This study compares patenting activity of Brazilian and American universities. Brazilian universities had 29.5-fold increase in applications and 4.01-fold in grants (1990–2001), about twice the increase presented by American universities in this period. However, a significant fraction of Brazilian academic applications are abandoned due to the lack of specialized staff to help in writing and to shepherd the application through the patenting process in universities. The participation of research institutes in technological innovation is increasing steadily, even without financial incentives.

Suggested Citation

  • Rita Pinheiro-Machado & P. L. Oliveira, 2004. "A comparative study of patenting activity in U.S. and Brazilian scientific institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(3), pages 323-338, November.
  • Handle: RePEc:spr:scient:v:61:y:2004:i:3:d:10.1023_b:scie.0000045113.27221.bf
    DOI: 10.1023/B:SCIE.0000045113.27221.bf
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:SCIE.0000045113.27221.bf
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:SCIE.0000045113.27221.bf?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. Mowery, David C. & Nelson, Richard R. & Sampat, Bhaven N. & Ziedonis, Arvids A., 2001. "The growth of patenting and licensing by U.S. universities: an assessment of the effects of the Bayh-Dole act of 1980," Research Policy, Elsevier, vol. 30(1), pages 99-119, January.
    3. da Motta e Albuquerque, Eduardo, 2000. "Domestic patents and developing countries: arguments for their study and data from Brazil (1980-1995)," Research Policy, Elsevier, vol. 29(9), pages 1047-1060, December.
    4. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    5. Lee, Yong S., 1996. "'Technology transfer' and the research university: a search for the boundaries of university-industry collaboration," Research Policy, Elsevier, vol. 25(6), pages 843-863, September.
    6. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurora A. C. Teixeira & Luisa Mota, 2012. "A bibliometric portrait of the evolution, scientific roots and influence of the literature on university–industry links," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 719-743, December.
    2. Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
    3. Yuandi Wang & Die Hu & Weiping Li & Yiwei Li & Qiang Li, 2015. "Collaboration strategies and effects on university research: evidence from Chinese universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 725-749, May.
    4. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    5. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    6. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    7. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    8. Isabel Maria Bodas Freitas & Aldo Geuna & Federica Rossi, 2011. "University–Industry Interactions: The Unresolved Puzzle," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 11, Edward Elgar Publishing.
    9. Azagra-Caro, Joaquin M. & Archontakis, Fragiskos & Gutierrez-Gracia, Antonio & Fernandez-de-Lucio, Ignacio, 2006. "Faculty support for the objectives of university-industry relations versus degree of R&D cooperation: The importance of regional absorptive capacity," Research Policy, Elsevier, vol. 35(1), pages 37-55, February.
    10. Robert Dalpé, 2002. "Bibliometric analysis of biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(2), pages 189-213, August.
    11. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    12. Rudi Bekkers & Bodas Freitas, 2008. "Analysing preferences for knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Grenoble Ecole de Management (Post-Print) hal-01487467, HAL.
    13. Bart Looy & Tom Magerman & Koenraad Debackere, 2007. "Developing technology in the vicinity of science: An examination of the relationship between science intensity (of patents) and technological productivity within the field of biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 441-458, February.
    14. Yutao Sun & Chen Zhang & Robert A. W. Kok, 2020. "The role of research outcome quality in the relationship between university research collaboration and technology transfer: empirical results from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1003-1026, February.
    15. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    16. Burhan, Muqbil & Singh, Anil K. & Jain, Sudhir K., 2017. "Patents as proxy for measuring innovations: A case of changing patent filing behavior in Indian public funded research organizations," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 181-190.
    17. James A. Cunningham & Erik E. Lehmann & Matthias Menter & Nikolaus Seitz, 2019. "The impact of university focused technology transfer policies on regional innovation and entrepreneurship," The Journal of Technology Transfer, Springer, vol. 44(5), pages 1451-1475, October.
    18. Borah, Dhruba & Massini, Silvia & Malik, Khaleel, 2023. "Teaching benefits of multi-helix university-industry research collaborations: Towards a holistic framework," Research Policy, Elsevier, vol. 52(8).
    19. De Fuentes, Claudia & Dutrénit, Gabriela, 2012. "Best channels of academia–industry interaction for long-term benefit," Research Policy, Elsevier, vol. 41(9), pages 1666-1682.
    20. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:61:y:2004:i:3:d:10.1023_b:scie.0000045113.27221.bf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.