IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i9d10.1007_s11192-024-05114-z.html
   My bibliography  Save this article

Automated recognition of innovative sentences in academic articles: semi-automatic annotation for cost reduction and SAO reconstruction for enhanced data

Author

Listed:
  • Biao Zhang

    (National Science Library (Chengdu), Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunwei Chen

    (National Science Library (Chengdu), Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Research on innovative content within academic articles plays a vital role in exploring the frontiers of scientific and technological innovation while facilitating the integration of scientific and technological evaluation into academic discourse. To efficiently gather the latest innovative concepts, it is essential to accurately recognize innovative sentences within academic articles. Although several supervised methods for classifying article sentences exist, such as citation function sentences, future work sentences, and formal citation sentences, most of these methods rely on manual annotations or rule-based matching to construct datasets, often neglecting an in-depth exploration of model performance enhancement. To address the limitations of existing research in this domain, this study introduces a semi-automatic annotation method for innovative sentences (IS) with the assistance of expert comments information and proposes a data augmentation method by SAO reconstruction to augment the training dataset. Within this paper, we compared and analyzed the effectiveness of multiple algorithms for recognizing IS within academic articles. This study utilized the full text of academic articles as the research subject and employed the semi-automatic method to annotate IS for creating the training dataset. Then, this study validated the effectiveness of the semi-automatic annotation method through manual inspection and compared it with rule-based annotation methods. Additionally, the impacts of different augmentation ratios on model performance were also explored. The empirical results reveal the following: (1) The semi-automatic annotation method proposed in this study achieves an accuracy rate of 0.87239, ensuring the validity of annotated data while reducing the manual annotation cost. (2) The SAO reconstruction for data augmentation method significantly improved the accuracy of machine learning and deep learning algorithms in the recognition of IS. (3) When the augmentation ratio in the training set was set to 50%, the trained GPT-2 model was superior to other algorithms, achieving an ACC of 0.97883 in the test set and an F1 score of 0.95505 in practical application.

Suggested Citation

  • Biao Zhang & Yunwei Chen, 2024. "Automated recognition of innovative sentences in academic articles: semi-automatic annotation for cost reduction and SAO reconstruction for enhanced data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5403-5432, September.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:9:d:10.1007_s11192-024-05114-z
    DOI: 10.1007/s11192-024-05114-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05114-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05114-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:9:d:10.1007_s11192-024-05114-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.