IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i7d10.1007_s11192-024-05070-8.html
   My bibliography  Save this article

Are the confidence scores of reviewers consistent with the review content? Evidence from top conference proceedings in AI

Author

Listed:
  • Wenqing Wu

    (Nanjing University of Science and Technology)

  • Haixu Xi

    (Nanjing University of Science and Technology)

  • Chengzhi Zhang

    (Nanjing University of Science and Technology)

Abstract

Peer review is a critical process used in academia to assess the quality and validity of research articles. Top-tier conferences in the field of artificial intelligence (e.g. ICLR and ACL et al.) require reviewers to provide confidence scores to ensure the reliability of their review reports. However, existing studies on confidence scores have neglected to measure the consistency between the comment text and the confidence score in a more refined way, which may overlook more detailed details (such as aspects) in the text, leading to incomplete understanding of the results and insufficient objective analysis of the results. In this work, we propose assessing the consistency between the textual content of the review reports and the assigned scores at a fine-grained level, including word, sentence and aspect levels. The data used in this paper is derived from the peer review comments of conferences in the fields of deep learning and natural language processing. We employed deep learning models to detect hedge sentences and their corresponding aspects. Furthermore, we conducted statistical analyses of the length of review reports, frequency of hedge word usage, number of hedge sentences, frequency of aspect mentions, and their associated sentiment to assess the consistency between the textual content and confidence scores. Finally, we performed correlation analysis, significance tests and regression analysis on the data to examine the impact of confidence scores on the outcomes of the papers. The results indicate that textual content of the review reports and their confidence scores have high level of consistency at the word, sentence, and aspect levels. The regression results reveal a negative correlation between confidence scores and paper outcomes, indicating that higher confidence scores given by reviewers were associated with paper rejection. This indicates that current overall assessment of the paper’s content and quality by the experts is reliable, making the transparency and fairness of the peer review process convincing. We release our data and associated codes at https://github.com/njust-winchy/confidence_score .

Suggested Citation

  • Wenqing Wu & Haixu Xi & Chengzhi Zhang, 2024. "Are the confidence scores of reviewers consistent with the review content? Evidence from top conference proceedings in AI," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4109-4135, July.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05070-8
    DOI: 10.1007/s11192-024-05070-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05070-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05070-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05070-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.