IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i7d10.1007_s11192-024-05063-7.html
   My bibliography  Save this article

Degree assortativity in collaboration networks and breakthrough innovation: the moderating role of knowledge networks

Author

Listed:
  • Runhui Lin

    (Nankai University
    Nankai University
    Nankai University)

  • Biting Li

    (Nankai University)

  • Yanhong Lu

    (Hebei University of Technology)

  • Yalin Li

    (Nankai University)

Abstract

Collaboration networks are widely recognized as essential channels for accessing innovation resources and facilitating creative activities by enabling the exchange of knowledge and information. However, there is little known about whether and how the similarities and dissimilarities between actors forming ties in a collaboration network can either stimulate or inhibit firms’ breakthrough innovation. This study explores the relationship between degree assortativity in collaboration networks and breakthrough innovation performance, considering the moderating role of knowledge network characteristics. Using a sample of 80,129 semiconductor patents from the United States Patent and Trademark Office database spanning the years 1975 to 2007, we constructed both the internal collaboration network and the knowledge network of firms. To test our hypotheses, we employed a negative binomial regression model. Our findings demonstrate that firms with lower degree assortativity in their collaboration networks tend to exhibit higher levels of breakthrough innovation performance compared to those with higher degree assortativity. Moreover, the number of direct ties in the knowledge network strengthens the negative relationship between collaboration network degree assortativity and breakthrough innovation. Conversely, the number of non-redundant ties in the knowledge network mitigates the negative relationship between collaboration network degree assortativity and breakthrough innovation. This study provides practical guidance for firms aiming to enhance their innovation capabilities by simultaneously developing internal collaboration networks and knowledge networks.

Suggested Citation

  • Runhui Lin & Biting Li & Yanhong Lu & Yalin Li, 2024. "Degree assortativity in collaboration networks and breakthrough innovation: the moderating role of knowledge networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3809-3839, July.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05063-7
    DOI: 10.1007/s11192-024-05063-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05063-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05063-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    2. Daniel Tzabbar & Alex Vestal, 2015. "Bridging the Social Chasm in Geographically Distributed R&D Teams: The Moderating Effects of Relational Strength and Status Asymmetry on the Novelty of Team Innovation," Organization Science, INFORMS, vol. 26(3), pages 811-829, June.
    3. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    4. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    5. Luyun Xu & Jian Li & Xin Zhou, 2019. "Exploring new knowledge through research collaboration: the moderation of the global and local cohesion of knowledge networks," The Journal of Technology Transfer, Springer, vol. 44(3), pages 822-849, June.
    6. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    7. Guan, Jiancheng & Zhang, Jingjing & Yan, Yan, 2015. "The impact of multilevel networks on innovation," Research Policy, Elsevier, vol. 44(3), pages 545-559.
    8. Antoni Rubí-Barceló, 2012. "Core/periphery scientific collaboration networks among very similar researchers," Theory and Decision, Springer, vol. 72(4), pages 463-483, April.
    9. Gautam Ahuja & Giuseppe Soda & Akbar Zaheer, 2012. "The Genesis and Dynamics of Organizational Networks," Organization Science, INFORMS, vol. 23(2), pages 434-448, April.
    10. Christina Fang & Jeho Lee & Melissa A. Schilling, 2010. "Balancing Exploration and Exploitation Through Structural Design: The Isolation of Subgroups and Organizational Learning," Organization Science, INFORMS, vol. 21(3), pages 625-642, June.
    11. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    12. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    13. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    14. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    15. Gautam Ahuja & Riitta Katila, 2001. "Technological acquisitions and the innovation performance of acquiring firms: a longitudinal study," Strategic Management Journal, Wiley Blackwell, vol. 22(3), pages 197-220, March.
    16. Sanjeev Goyal & Marco J. van der Leij & José Luis Moraga-Gonzalez, 2006. "Economics: An Emerging Small World," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 403-432, April.
    17. Marco Tortoriello, 2015. "The social underpinnings of absorptive capacity: The moderating effects of structural holes on innovation generation based on external knowledge," Strategic Management Journal, Wiley Blackwell, vol. 36(4), pages 586-597, April.
    18. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
    19. Erin Leahey & Jina Lee & Russell J. Funk, 2023. "What Types of Novelty Are Most Disruptive?," American Sociological Review, , vol. 88(3), pages 562-597, June.
    20. Ranjay Gulati & Maxim Sytch & Adam Tatarynowicz, 2012. "The Rise and Fall of Small Worlds: Exploring the Dynamics of Social Structure," Organization Science, INFORMS, vol. 23(2), pages 449-471, April.
    21. Gino Cattani & Simone Ferriani, 2008. "A Core/Periphery Perspective on Individual Creative Performance: Social Networks and Cinematic Achievements in the Hollywood Film Industry," Organization Science, INFORMS, vol. 19(6), pages 824-844, December.
    22. Quatraro, Francesco, 2010. "Knowledge coherence, variety and economic growth: Manufacturing evidence from Italian regions," Research Policy, Elsevier, vol. 39(10), pages 1289-1302, December.
    23. Massimo Maoret & Marco Tortoriello & Daniela Iubatti, 2020. "Big Fish, Big Pond? The Joint Effect of Formal and Informal Core/Periphery Positions on the Generation of Incremental Innovations," Organization Science, INFORMS, vol. 31(6), pages 1538-1559, November.
    24. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    25. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    26. Simon Rodan & Charles Galunic, 2004. "More than network structure: how knowledge heterogeneity influences managerial performance and innovativeness," Strategic Management Journal, Wiley Blackwell, vol. 25(6), pages 541-562, June.
    27. Jonathan Glover & Eunhee Kim, 2021. "Optimal Team Composition: Diversity to Foster Implicit Team Incentives," Management Science, INFORMS, vol. 67(9), pages 5800-5820, September.
    28. Jingbei Wang & Naiding Yang, 2019. "Dynamics of collaboration network community and exploratory innovation: the moderation of knowledge networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1067-1084, November.
    29. Jasjit Singh, 2005. "Collaborative Networks as Determinants of Knowledge Diffusion Patterns," Management Science, INFORMS, vol. 51(5), pages 756-770, May.
    30. Iacus, Stefano M. & King, Gary & Porro, Giuseppe, 2011. "Multivariate Matching Methods That Are Monotonic Imbalance Bounding," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 345-361.
    31. Zakaryan, Arusyak, 2023. "Organizational knowledge networks, search and exploratory invention," Technovation, Elsevier, vol. 122(C).
    32. Konstantinos Grigoriou & Frank T. Rothaermel, 2017. "Organizing for knowledge generation: internal knowledge networks and the contingent effect of external knowledge sourcing," Strategic Management Journal, Wiley Blackwell, vol. 38(2), pages 395-414, February.
    33. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    34. Dong, John Qi & Yang, Chia-Han, 2016. "Being central is a double-edged sword: Knowledge network centrality and new product development in U.S. pharmaceutical industry," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 379-385.
    35. Kevin Zheng Zhou & Caroline Bingxin Li, 2012. "How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing," Strategic Management Journal, Wiley Blackwell, vol. 33(9), pages 1090-1102, September.
    36. Isin Guler & Atul Nerkar, 2012. "The impact of global and local cohesion on innovation in the pharmaceutical industry," Strategic Management Journal, Wiley Blackwell, vol. 33(5), pages 535-549, May.
    37. Cho, Sam Yul & Kim, Sang Kyun, 2017. "Horizon problem and firm innovation: The influence of CEO career horizon, exploitation and exploration on breakthrough innovations," Research Policy, Elsevier, vol. 46(10), pages 1801-1809.
    38. Brennecke, Julia & Rank, Olaf, 2017. "The firm’s knowledge network and the transfer of advice among corporate inventors—A multilevel network study," Research Policy, Elsevier, vol. 46(4), pages 768-783.
    39. Solon Moreira & Arjan Markus & Keld Laursen, 2018. "Knowledge diversity and coordination: The effect of intrafirm inventor task networks on absorption speed," Strategic Management Journal, Wiley Blackwell, vol. 39(9), pages 2517-2546, September.
    40. Sai Yayavaram & Wei-Ru Chen, 2015. "Changes in firm knowledge couplings and firm innovation performance: The moderating role of technological complexity," Strategic Management Journal, Wiley Blackwell, vol. 36(3), pages 377-396, March.
    41. Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
    42. J. Stuart Bunderson & Ray E. Reagans, 2011. "Power, Status, and Learning in Organizations," Organization Science, INFORMS, vol. 22(5), pages 1182-1194, October.
    43. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    2. Jiao, Hao & Wang, Tang & Yang, Jifeng, 2022. "Team structure and invention impact under high knowledge diversity: An empirical examination of computer workstation industry," Technovation, Elsevier, vol. 114(C).
    3. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2020. "Ties that matter: The impact of alliance partner knowledge recombination novelty on knowledge utilization in R&D alliances," Research Policy, Elsevier, vol. 49(7).
    4. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    5. Brennecke, Julia & Rank, Olaf, 2017. "The firm’s knowledge network and the transfer of advice among corporate inventors—A multilevel network study," Research Policy, Elsevier, vol. 46(4), pages 768-783.
    6. Khanna, Rajat, 2023. "Passing the torch of knowledge: Star death, collaborative ties, and knowledge creation," Research Policy, Elsevier, vol. 52(1).
    7. Zhang, JingJing & Yan, Yan & Guan, JianCheng, 2019. "Recombinant distance, network governance and recombinant innovation," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 260-272.
    8. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    9. Plantec, Quentin & Le Masson, Pascal & Weil, Benoît, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    10. Luyun Xu & Jian Li & Xin Zhou, 2019. "Exploring new knowledge through research collaboration: the moderation of the global and local cohesion of knowledge networks," The Journal of Technology Transfer, Springer, vol. 44(3), pages 822-849, June.
    11. Goossen, Martin C. & Paruchuri, Srikanth, 2022. "Measurement errors and estimation biases with incomplete social networks: replication studies on intra-firm inventor network analysis," Research Policy, Elsevier, vol. 51(1).
    12. Khanna, Rajat, 2021. "Aftermath of a tragedy: A star's death and coauthors’ subsequent productivity," Research Policy, Elsevier, vol. 50(2).
    13. Zakaryan, Arusyak, 2023. "Organizational knowledge networks, search and exploratory invention," Technovation, Elsevier, vol. 122(C).
    14. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    15. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    16. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    17. Guo, Min & Yang, Naiding & Wang, Jingbei & Zhang, Yanlu & Wang, Yan, 2021. "How do structural holes promote network expansion?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    18. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    19. Taiye Luo & Zhengang Zhang, 2021. "Multi-network embeddedness and innovation performance of R&D employees," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8091-8107, September.
    20. Zhang, Feng & Jiang, Guohua & Cantwell, John A., 2019. "Geographically Dispersed Technological Capability Building and MNC Innovative Performance: The Role of Intra-firm Flows of Newly Absorbed Knowledge," Journal of International Management, Elsevier, vol. 25(3), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05063-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.