IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v128y2023i2d10.1007_s11192-022-04596-z.html
   My bibliography  Save this article

Fusion Matrix–Based Text Similarity Measures for Clustering of Retrieval Results

Author

Listed:
  • Yueyang Zhao

    (Shengjing Hospital of China Medical University)

  • Lei Cui

    (China Medical University)

Abstract

To address the deficiency in semantic representations of medical texts and achieve the clustering of PubMed database retrieval results, this study presented a method to construct a fusion matrix using text similarity measures. Similarity relations between phrases, texts, and the content of phrases and texts were combined to create a fusion matrix, and several clustering algorithms were trained to group a collection of texts from the PubMed database. Category annotations were then created to describe the meaning of each category of clustered texts. Experimental results showed that the fusion matrix-based clustering was superior in grouping the text sets, and clustering the training set was not necessary to improve clustering performance. Moreover, the extracted high-frequency words in the category descriptions distinguished the meanings of the categories well; therefore, the fusion matrix design was effective for clustering descriptions of academic texts. As only the PubMed database was used in this study, future research should extend the fusion matrix to other text repositories.

Suggested Citation

  • Yueyang Zhao & Lei Cui, 2023. "Fusion Matrix–Based Text Similarity Measures for Clustering of Retrieval Results," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1163-1186, February.
  • Handle: RePEc:spr:scient:v:128:y:2023:i:2:d:10.1007_s11192-022-04596-z
    DOI: 10.1007/s11192-022-04596-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04596-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04596-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe, 2010. "Good properties of similarity measures and their complementarity," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(10), pages 2151-2160, October.
    2. Tingting Mu & John Y. Goulermas & Ioannis Korkontzelos & Sophia Ananiadou, 2016. "Descriptive document clustering via discriminant learning in a co-embedded space of multilevel similarities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(1), pages 106-133, January.
    3. Leo Egghe, 2010. "Good properties of similarity measures and their complementarity," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(10), pages 2151-2160, October.
    4. Yang Liu & Songhua Xu, 2017. "A local context-aware LDA model for topic modeling in a document network," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1429-1448, June.
    5. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    2. Brian Stacey, 2017. "A Standardized Treatment of Binary Similarity Measures with an Introduction to k-Vector Percentage Normalized Similarity," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-3.
    3. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    4. Sabeena Begam S & Vimala J & Ganeshsree Selvachandran & Tran Thi Ngan & Rohit Sharma, 2020. "Similarity Measure of Lattice Ordered Multi-Fuzzy Soft Sets Based on Set Theoretic Approach and Its Application in Decision Making," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    5. Lukun Zheng, 2019. "Using mutual information as a cocitation similarity measure," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1695-1713, June.
    6. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    7. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    8. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    9. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    10. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    11. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    12. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    13. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    14. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    15. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    16. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    17. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    18. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    19. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    20. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:128:y:2023:i:2:d:10.1007_s11192-022-04596-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.