IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i8d10.1007_s11192-022-04446-y.html
   My bibliography  Save this article

Relevance of document types in the scores’ calculation of a specific field-normalized indicator: Are the scores strongly dependent on or nearly independent of the document type handling?

Author

Listed:
  • Robin Haunschild

    (Max Planck Institute for Solid State Research)

  • Lutz Bornmann

    (Max Planck Institute for Solid State Research
    Administrative Headquarters of the Max Planck Society)

Abstract

Although it is bibliometric standard to employ field normalization, the detailed procedure of field normalization is not standardized regarding the handling of the document types. All publications without filtering the document type can be used or only selected document types. Furthermore, the field-normalization procedure can be carried out with regard to the document type of publications or without. We studied if the field-normalized scores strongly depend on the choice of different document type handlings. In doing so, we used the publications from the Web of Science between 2000 and 2017 and compared different field-normalized scores. We compared the results on the individual publication level, the country level, and the institutional level. We found rather high correlations between the different scores but the concordance values provide a more differentiated conclusion: Rather different scores are produced on the individual publication level. As our results on the aggregated levels are not supported by our results on the level of individual publications, any comparison of normalized scores that result from different procedures should only be performed with caution.

Suggested Citation

  • Robin Haunschild & Lutz Bornmann, 2022. "Relevance of document types in the scores’ calculation of a specific field-normalized indicator: Are the scores strongly dependent on or nearly independent of the document type handling?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4419-4438, August.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04446-y
    DOI: 10.1007/s11192-022-04446-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04446-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04446-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludo Waltman & Clara Calero‐Medina & Joost Kosten & Ed C.M. Noyons & Robert J.W. Tijssen & Nees Jan van Eck & Thed N. van Leeuwen & Anthony F.J. van Raan & Martijn S. Visser & Paul Wouters, 2012. "The Leiden ranking 2011/2012: Data collection, indicators, and interpretation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2419-2432, December.
    2. John P A Ioannidis & Kevin Boyack & Paul F Wouters, 2016. "Citation Metrics: A Primer on How (Not) to Normalize," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-7, September.
    3. Lundberg, Jonas, 2007. "Lifting the crown—citation z-score," Journal of Informetrics, Elsevier, vol. 1(2), pages 145-154.
    4. Haunschild, Robin & Daniels, Angela D. & Bornmann, Lutz, 2022. "Scores of a specific field-normalized indicator calculated with different approaches of field-categorization: Are the scores different or similar?," Journal of Informetrics, Elsevier, vol. 16(1).
    5. Wolfgang Glänzel & Henk F. Moed, 2002. "Journal impact measures in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(2), pages 171-193, February.
    6. Diana Hicks & Paul Wouters & Ludo Waltman & Sarah de Rijcke & Ismael Rafols, 2015. "Bibliometrics: The Leiden Manifesto for research metrics," Nature, Nature, vol. 520(7548), pages 429-431, April.
    7. Bornmann, Lutz & Marx, Werner, 2015. "Methods for the generation of normalized citation impact scores in bibliometrics: Which method best reflects the judgements of experts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 408-418.
    8. Jian Wang, 2013. "Citation time window choice for research impact evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 851-872, March.
    9. Ludo Waltman & Clara Calero-Medina & Joost Kosten & Ed C.M. Noyons & Robert J.W. Tijssen & Nees Jan Eck & Thed N. Leeuwen & Anthony F.J. Raan & Martijn S. Visser & Paul Wouters, 2012. "The Leiden ranking 2011/2012: Data collection, indicators, and interpretation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2419-2432, December.
    10. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & Klaus Wohlrabe, 2019. "Normalisation of citation impact in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 841-884, August.
    2. Lutz Bornmann & Richard Williams, 2020. "An evaluation of percentile measures of citation impact, and a proposal for making them better," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1457-1478, August.
    3. Bornmann, Lutz & Haunschild, Robin & Mutz, Rüdiger, 2020. "Should citations be field-normalized in evaluative bibliometrics? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Haunschild, Robin & Daniels, Angela D. & Bornmann, Lutz, 2022. "Scores of a specific field-normalized indicator calculated with different approaches of field-categorization: Are the scores different or similar?," Journal of Informetrics, Elsevier, vol. 16(1).
    5. Loet Leydesdorff & Paul Wouters & Lutz Bornmann, 2016. "Professional and citizen bibliometrics: complementarities and ambivalences in the development and use of indicators—a state-of-the-art report," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2129-2150, December.
    6. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "On the interplay between normalisation, bias, and performance of paper impact metrics," Journal of Informetrics, Elsevier, vol. 13(1), pages 270-290.
    7. Lutz Bornmann & Alexander Tekles & Loet Leydesdorff, 2019. "How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1187-1205, May.
    8. Zhesi Shen & Liying Yang & Zengru Di & Jinshan Wu, 2019. "Large enough sample size to rank two groups of data reliably according to their means," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 653-671, February.
    9. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    10. Bornmann, Lutz & Haunschild, Robin, 2016. "Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator," Journal of Informetrics, Elsevier, vol. 10(3), pages 875-887.
    11. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    12. Mike Thelwall, 2019. "The influence of highly cited papers on field normalised indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 519-537, February.
    13. Bornmann, Lutz & Ganser, Christian & Tekles, Alexander, 2022. "Simulation of the h index use at university departments within the bibliometrics-based heuristics framework: Can the indicator be used to compare individual researchers?," Journal of Informetrics, Elsevier, vol. 16(1).
    14. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
    15. Juan Miguel Campanario, 2018. "Are leaders really leading? Journals that are first in Web of Science subject categories in the context of their groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 111-130, April.
    16. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2023. "Correlating article citedness and journal impact: an empirical investigation by field on a large-scale dataset," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1877-1894, March.
    17. Yang, Alex Jie & Wu, Linwei & Zhang, Qi & Wang, Hao & Deng, Sanhong, 2023. "The k-step h-index in citation networks at the paper, author, and institution levels," Journal of Informetrics, Elsevier, vol. 17(4).
    18. Lutz Bornmann, 2020. "Bibliometrics-based decision tree (BBDT) for deciding whether two universities in the Leiden ranking differ substantially in their performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1255-1258, February.
    19. Milojević, Staša & Radicchi, Filippo & Bar-Ilan, Judit, 2017. "Citation success index − An intuitive pair-wise journal comparison metric," Journal of Informetrics, Elsevier, vol. 11(1), pages 223-231.
    20. Loet Leydesdorff & Lutz Bornmann & Jonathan Adams, 2019. "The integrated impact indicator revisited (I3*): a non-parametric alternative to the journal impact factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1669-1694, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04446-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.