IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i6d10.1007_s11192-021-03981-4.html
   My bibliography  Save this article

National origin diversity and innovation performance: the case of Japan

Author

Listed:
  • Byeongwoo Kang

    (Hitotsubashi University)

  • Kaoru Nabeshima

    (Waseda University)

Abstract

The debate on whether a team’s diversity influences innovation outcomes has gained attention in literature on innovation. Our study focuses on national origin among various teams’ diversity criteria. We use Japanese patent data between 2001 and 2015 to analyze inventors teams. Our analysis reveals that the inventors’ national origin diversity positively impacts the inventions’ quality measures. Furthermore, as the national origin diversity increases, its negative effects become dominant, eliciting an inverted-U-shaped effect. The results were consistent even after controlling for other research and development outcome determinants. Our findings have theoretical and practical implications for innovation policies.

Suggested Citation

  • Byeongwoo Kang & Kaoru Nabeshima, 2021. "National origin diversity and innovation performance: the case of Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5333-5351, June.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:6:d:10.1007_s11192-021-03981-4
    DOI: 10.1007/s11192-021-03981-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03981-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03981-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Huo, Dong & Motohashi, Kazuyuki & Gong, Han, 2019. "Team diversity as dissimilarity and variety in organizational innovation," Research Policy, Elsevier, vol. 48(6), pages 1564-1572.
    3. Duleep, Harriet & Jaeger, David A. & Regets, Mark, 2012. "How Immigration May Affect U.S. Native Entrepreneurship: Theoretical Building Blocks and Preliminary Results," IZA Discussion Papers 6677, Institute of Labor Economics (IZA).
    4. Marcus Berliant & Masahisa Fujita, 2008. "Knowledge Creation As A Square Dance On The Hilbert Cube," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(4), pages 1251-1295, November.
    5. Ferrucci, Edoardo & Lissoni, Francesco, 2019. "Foreign inventors in Europe and the United States: Diversity and Patent Quality," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Marco, Alan C. & Sarnoff, Joshua D. & deGrazia, Charles A.W., 2019. "Patent claims and patent scope," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    7. Goto, Akira & Motohashi, Kazuyuki, 2007. "Construction of a Japanese Patent Database and a first look at Japanese patenting activities," Research Policy, Elsevier, vol. 36(9), pages 1431-1442, November.
    8. Drivas, Kyriakos & Kaplanis, Ioannis, 2020. "The role of international collaborations in securing the patent grant," Journal of Informetrics, Elsevier, vol. 14(4).
    9. Lazzeretti, Luciana & Capone, Francesco, 2016. "How proximity matters in innovation networks dynamics along the cluster evolution. A study of the high technology applied to cultural goods," Journal of Business Research, Elsevier, vol. 69(12), pages 5855-5865.
    10. Xie, Luqun & Zhou, Jieyu & Zong, Qingqing & Lu, Qian, 2020. "Gender diversity in R&D teams and innovation efficiency: Role of the innovation context," Research Policy, Elsevier, vol. 49(1).
    11. Alberto Alesina & Eliana La Ferrara, 2003. "Ethnic Diversity and Economic Performance," Harvard Institute of Economic Research Working Papers 2028, Harvard - Institute of Economic Research.
    12. Scott Shane, 2001. "Technological Opportunities and New Firm Creation," Management Science, INFORMS, vol. 47(2), pages 205-220, February.
    13. Novelli, Elena, 2015. "An examination of the antecedents and implications of patent scope," Research Policy, Elsevier, vol. 44(2), pages 493-507.
    14. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    15. Stefano Breschi & Francesco Lissoni & Ernest Miguelez, 2017. "Foreign-origin inventors in the USA: testing for diaspora and brain gain effects," Journal of Economic Geography, Oxford University Press, vol. 17(5), pages 1009-1038.
    16. Marcus Berliant & Masahisa Fujita, 2009. "Dynamics of knowledge creation and transfer: The two person case," International Journal of Economic Theory, The International Society for Economic Theory, vol. 5(2), pages 155-179, June.
    17. Max Nathan, 2015. "Same difference? Minority ethnic inventors, diversity and innovation in the UK," Journal of Economic Geography, Oxford University Press, vol. 15(1), pages 129-168.
    18. Picard, Pierre M. & van Pottelsberghe de la Potterie, Bruno, 2013. "Patent office governance and patent examination quality," Journal of Public Economics, Elsevier, vol. 104(C), pages 14-25.
    19. Byeongwoo Kang & Kazuyuki Motohashi, 2020. "Academic contribution to industrial innovation by funding type," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 169-193, July.
    20. Sander Hoogendoorn & Hessel Oosterbeek & Mirjam van Praag, 2013. "The Impact of Gender Diversity on the Performance of Business Teams: Evidence from a Field Experiment," Management Science, INFORMS, vol. 59(7), pages 1514-1528, July.
    21. Kang, Byeongwoo, 2016. "What best transfers knowledge? Capital, goods, and labor in East Asia," Economics Letters, Elsevier, vol. 139(C), pages 69-71.
    22. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    23. repec:wip:wpaper:8 is not listed on IDEAS
    24. Lori Rosenkopf & Atul Nerkar, 2001. "Beyond local search: boundary‐spanning, exploration, and impact in the optical disk industry," Strategic Management Journal, Wiley Blackwell, vol. 22(4), pages 287-306, April.
    25. Tom Broekel & Ron Boschma, 2012. "Knowledge networks in the Dutch aviation industry: the proximity paradox," Journal of Economic Geography, Oxford University Press, vol. 12(2), pages 409-433, March.
    26. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    27. Haibo Liu & Jürgen Mihm & Manuel E. Sosa & Manuel E. Sosa, 2018. "Where Do Stars Come From? The Role of Star vs. Nonstar Collaborators in Creative Settings," Organization Science, INFORMS, vol. 29(6), pages 1149-1169, December.
    28. Joan Penner‐Hahn & J. Myles Shaver, 2005. "Does international research and development increase patent output? An analysis of Japanese pharmaceutical firms," Strategic Management Journal, Wiley Blackwell, vol. 26(2), pages 121-140, February.
    29. Kristina Dahlin & Deans M. Behrens, 2005. "When is an invention really radical? Defining and measuring technological radicalness," Post-Print hal-00480416, HAL.
    30. Ron Boschma, 2005. "Proximity and Innovation: A Critical Assessment," Regional Studies, Taylor & Francis Journals, vol. 39(1), pages 61-74.
    31. Stefano Breschi & Francesco Lissoni & Ernest Miguelez, 2017. "Foreign-origin inventors in the USA: testing for diaspora and brain gain effects," Journal of Economic Geography, Oxford University Press, vol. 17(5), pages 1009-1038.
    32. Kondo, Masayuki, 1999. "R&D dynamics of creating patents in the Japanese industry," Research Policy, Elsevier, vol. 28(6), pages 587-600, August.
    33. Brixy, Udo & Brunow, Stephan & D'Ambrosio, Anna, 2020. "The unlikely encounter: Is ethnic diversity in start-ups associated with innovation?," Research Policy, Elsevier, vol. 49(4).
    34. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    35. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    2. KANG Byeongwoo & MOTOHASHI Kazuyuki, 2020. "Local Industry Influence on Commercialization of University Research by University Startups," Discussion papers 20086, Research Institute of Economy, Trade and Industry (RIETI).
    3. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    4. Cathrin Söllner & Dirk Fornahl, 2021. "Unleashing Inventive Power - Solving cognitive, social and geographic distance issues with cultural proximity," Bremen Papers on Economics & Innovation 2103, University of Bremen, Faculty of Business Studies and Economics.
    5. Mariia Shkolnykova & Muhamed Kudic, 2022. "Who benefits from SMEs’ radical innovations?—empirical evidence from German biotechnology," Small Business Economics, Springer, vol. 58(2), pages 1157-1185, February.
    6. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    7. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    8. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    9. Cristelli, Gabriele & Lissoni, Francesco, 2020. "Free movement of inventors: open-border policy and innovation in Switzerland," MPRA Paper 107433, University Library of Munich, Germany.
    10. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    11. Ceren Ozgen, 2021. "The economics of diversity: Innovation, productivity and the labour market," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1168-1216, September.
    12. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    13. Yuandi Wang & Xiongfeng Pan & Yantai Chen & Xin Gu, 2013. "Do references in transferred patent documents signal learning opportunities for the receiving firms?," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 731-752, May.
    14. Cristelli, Gabriele & Lissoni, Francesco, 2020. "Free movement of inventors: open-border policy and innovation in Switzerland," MPRA Paper 104120, University Library of Munich, Germany.
    15. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    16. Lee, Honggi, 2023. "The heterogeneous effects of patent scope on licensing propensity," Research Policy, Elsevier, vol. 52(3).
    17. Buchmann, Tobias & Wolf, Patrick, 2024. "Breakthrough inventions in solar PV and wind technologies: The role of scientific discoveries," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    18. Marino, Alba & Mudambi, Ram & Perri, Alessandra & Scalera, Vittoria G., 2020. "Ties that bind: Ethnic inventors in multinational enterprises’ knowledge integration and exploitation," Research Policy, Elsevier, vol. 49(9).
    19. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    20. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:6:d:10.1007_s11192-021-03981-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.