IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v124y2020i1d10.1007_s11192-020-03468-8.html
   My bibliography  Save this article

Regarding weight assignment algorithms of main path analysis and the conversion of arc weights to node weights

Author

Listed:
  • Chung-Huei Kuan

    (National Taiwan University of Science and Technology
    National Taiwan University)

Abstract

In a recent article, Liu et al. (Scientometrics 119(1):379–391, 2019) elaborated a number of issues of the main path analysis (MPA) and provided valuable insight into its application. Among these issues, the authors compared three weight assignment algorithms and suggested that one is preferable in simulating the knowledge diffusion scenario. The authors further stated that one may convert a document’s related arc weights assigned by these algorithms into a weight of the document itself by taking the average of its incident and outgoing arc weights, and claimed that a document highly weighted as such may be considered as having a great impact. In this Letter, we address these two issues: (1) choice of weight assignment algorithms, and (2) conversion of arc weights to node weights from a different perspective and provide alternative suggestions, in the hope that we may enrich the discussion for MPA.

Suggested Citation

  • Chung-Huei Kuan, 2020. "Regarding weight assignment algorithms of main path analysis and the conversion of arc weights to node weights," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 775-782, July.
  • Handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03468-8
    DOI: 10.1007/s11192-020-03468-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03468-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03468-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    2. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    3. Kuan, Chung-Huei & Lin, Jia-Tian & Chen, Dar-Zen, 2021. "Characterizing Patent Assignees by Their Structural Positions Relative to a Field’s Evolutionary Trajectory," Journal of Informetrics, Elsevier, vol. 15(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang-Sheng Liu & Ming-Hung Lin, 2021. "Performance Assessment on the Application of Artificial Intelligence to Sustainable Supply Chain Management in the Construction Material Industry," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
    3. Song-Chia Hsu & Kai-Ying Chen & Chih-Ping Lin & Wei-Hao Su, 2022. "Knowledge Development Trajectories of Crime Prevention Domain: An Academic Study Based on Citation and Main Path Analysis," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    4. Liao, Shu-Chun & Chou, Tzu-Chuan & Huang, Chen-Hao, 2022. "Revisiting the development trajectory of the digital divide: A main path analysis approach," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    5. Bhatt, Priyanka C. & Lai, Kuei-Kuei & Drave, Vinayak A. & Lu, Tzu-Chuen & Kumar, Vimal, 2023. "Patent analysis based technology innovation assessment with the lens of disruptive innovation theory: A case of blockchain technological trajectories," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Fan Zeng & Stacy Hyun Nam Lee & Chris Kwan Yu Lo, 2020. "The Role of Information Systems in the Sustainable Development of Enterprises: A Systematic Literature Network Analysis," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    7. Xu, Song & Govindan, Kannan & Wang, Wanru & Yang, Wenting, 2024. "Supply chain management under cap-and-trade regulation: A literature review and research opportunities," International Journal of Production Economics, Elsevier, vol. 271(C).
    8. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    9. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    10. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).
    11. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2020. "The overlooked citations: Investigating the impact of ignoring citations to published patent applications," Journal of Informetrics, Elsevier, vol. 14(1).
    12. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    13. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    14. Na Liu & Philip Shapira & Xiaoxu Yue & Jiancheng Guan, 2021. "Mapping technological innovation dynamics in artificial intelligence domains: Evidence from a global patent analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-20, December.
    15. Jakob Hoffmann & Johannes Glückler, 2023. "Technological Cohesion and Convergence: A Main Path Analysis of the Bioeconomy, 1900–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    16. Yu, Dejian & Pan, Tianxing, 2021. "Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain," Journal of Informetrics, Elsevier, vol. 15(2).
    17. Huang, Chen-Hao & Liu, John S. & Ho, Mei Hsiu-Ching & Chou, Tzu-Chuan, 2022. "Towards more convergent main paths: A relevance-based approach," Journal of Informetrics, Elsevier, vol. 16(3).
    18. Wang, Xiaoli & Liang, Wenting & Ye, Xuanting & Chen, Lingdi & Liu, Yun, 2024. "Disruptive development path measurement for emerging technologies based on the patent citation network," Journal of Informetrics, Elsevier, vol. 18(1).
    19. Stacy H. Lee & Yang Zhou, 2022. "The Outlook for Sustainable Development Goals in Business and Management: A Systematic Literature Review and Keyword Cluster Analysis," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    20. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03468-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.