IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262050.html
   My bibliography  Save this article

Mapping technological innovation dynamics in artificial intelligence domains: Evidence from a global patent analysis

Author

Listed:
  • Na Liu
  • Philip Shapira
  • Xiaoxu Yue
  • Jiancheng Guan

Abstract

Artificial intelligence (AI) is emerging as a technology at the center of many political, economic, and societal debates. This paper formulates a new AI patent search strategy and applies this to provide a landscape analysis of AI innovation dynamics and technology evolution. The paper uses patent analyses, network analyses, and source path link count algorithms to examine AI spatial and temporal trends, cooperation features, cross-organization knowledge flow and technological routes. Results indicate a growing yet concentrated, non-collaborative and multi-path development and protection profile for AI patenting, with cross-organization knowledge flows based mainly on interorganizational knowledge citation links.

Suggested Citation

  • Na Liu & Philip Shapira & Xiaoxu Yue & Jiancheng Guan, 2021. "Mapping technological innovation dynamics in artificial intelligence domains: Evidence from a global patent analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0262050
    DOI: 10.1371/journal.pone.0262050
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262050
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262050&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    2. Ying Huang & Jannik Schuehle & Alan L. Porter & Jan Youtie, 2015. "A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2005-2022, December.
    3. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Trends and priority shifts in artificial intelligence technology invention: A global patent analysis," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 60-69.
    4. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    5. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    6. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    7. Magistretti, Stefano & Dell’Era, Claudio & Messeni Petruzzelli, Antonio, 2019. "How intelligent is Watson? Enabling digital transformation through artificial intelligence," Business Horizons, Elsevier, vol. 62(6), pages 819-829.
    8. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    9. Rainer Frietsch & Ulrich Schmoch, 2010. "Transnational patents and international markets," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 185-200, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyuk Park, 2024. "Analyzing the direct role of governmental organizations in artificial intelligence innovation," The Journal of Technology Transfer, Springer, vol. 49(2), pages 437-465, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
    2. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    3. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    4. Huang, Chen-Hao & Liu, John S. & Ho, Mei Hsiu-Ching & Chou, Tzu-Chuan, 2022. "Towards more convergent main paths: A relevance-based approach," Journal of Informetrics, Elsevier, vol. 16(3).
    5. Bhatt, Priyanka C. & Lai, Kuei-Kuei & Drave, Vinayak A. & Lu, Tzu-Chuen & Kumar, Vimal, 2023. "Patent analysis based technology innovation assessment with the lens of disruptive innovation theory: A case of blockchain technological trajectories," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    8. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    9. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    10. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).
    11. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2020. "The overlooked citations: Investigating the impact of ignoring citations to published patent applications," Journal of Informetrics, Elsevier, vol. 14(1).
    12. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    13. Ichiro Watanabe & Soichiro Takagi, 2021. "Technological Trajectory Analysis of Patent Citation Networks: Examining the Technological Evolution of Computer Graphic Processing Systems," The Review of Socionetwork Strategies, Springer, vol. 15(1), pages 1-25, June.
    14. Zhong, Sheng & Verspagen, Bart, 2016. "The role of technological trajectories in catching-up-based development: An application to energy efficiency technologies," MERIT Working Papers 2016-013, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Chuang, Thomas C. & Liu, John S. & Lu, Louis Y.Y. & Lee, Yachi, 2014. "The main paths of medical tourism: From transplantation to beautification," Tourism Management, Elsevier, vol. 45(C), pages 49-58.
    16. Zhou, Yong & Yang, Qijin & Lu, Shuo, 2023. "Research on the identification and formation mechanism of the main path of digital technology diffusion: Empirical evidence from China," Technology in Society, Elsevier, vol. 75(C).
    17. Shih-Chang Hung & John S. Liu & Louis Y. Y. Lu & Yu-Chiang Tseng, 2014. "Technological change in lithium iron phosphate battery: the key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 97-120, July.
    18. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    19. Hwang, Seonho & Shin, Juneseuk, 2019. "Extending technological trajectories to latest technological changes by overcoming time lags," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 142-153.
    20. Mei Hsiu-Ching Ho & John S. Liu & Kerr C.-T. Chang, 2017. "To include or not: the role of review papers in citation-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 65-76, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.