IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v115y2018i2d10.1007_s11192-018-2687-9.html
   My bibliography  Save this article

Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis

Author

Listed:
  • Hui Fang

    (Nanjing University)

Abstract

To comprehensively characterize the citation histories of sleeping beauties (SBs), this paper presents a derivative analysis of SB citation curves. Derivative analysis can differentiate among periods with different variation tendencies (ascending, declining or unchanged) in the number of yearly citations; these variation tendencies can be identified from successive (positive, negative or zero) derivatives. To overcome the interference caused by fluctuations in the citation curves, a smoothing method is first applied. A sleeping period appears in a citation curve as a horizontal region with a low citation count. During an awakening period, the derivatives of the curve are positive and may include a few zeros. Some SBs experience a rapid increase in yearly citations once awakened and have a short awakening period, whereas for others, the number of yearly citations increases steadily over a long awakening period. Different SBs can also show different forms based on the change in the number of yearly citations after they reach their peak, and these forms can also be distinguished through derivative analysis. Derivative analysis can be used alone to identify SBs and determine their awakening times or in combination with other methods of identifying SBs to improve their performance by assisting in the identification of abnormal SBs. Derivative analysis enables the “beauty coefficient’’ method (Ke et al. in Proc Natl Acad Sci USA 112(24):7426–7431, 2015) to determine awakening times that do not vary over time, thereby making Ke et al.’s method immune to interference due to citation fluctuations. It also allows one to determine multiple awakening times for a single SB.

Suggested Citation

  • Hui Fang, 2018. "Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1051-1070, May.
  • Handle: RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2687-9
    DOI: 10.1007/s11192-018-2687-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2687-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2687-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Gorry & Adil El Aichouchi, 2017. "Sleeping beauty awakened by self-citation of a review: A case study of Judah Folkman hypothesis on angiogenesis," Post-Print hal-03143246, HAL.
    2. Jiang Li & Fred Y. Ye, 2012. "The phenomenon of all-elements-sleeping-beauties in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 795-799, September.
    3. Aurora A. C. Teixeira & Pedro Cosme Vieira & Ana Patrícia Abreu, 2017. "Sleeping Beauties and their princes in innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 541-580, February.
    4. Ben Calster, 2012. "It takes time: A remarkable example of delayed recognition," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2341-2344, November.
    5. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    6. Rodrigo Costas & Thed N. van Leeuwen & Anthony F.J. van Raan, 2010. "Is scientific literature subject to a ‘Sell-By-Date’? A general methodology to analyze the ‘durability’ of scientific documents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 329-339, February.
    7. Jianjun Sun & Chao Min & Jiang Li, 2016. "A vector for measuring obsolescence of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 745-757, May.
    8. Lachance, Christian & Larivière, Vincent, 2014. "On the citation lifecycle of papers with delayed recognition," Journal of Informetrics, Elsevier, vol. 8(4), pages 863-872.
    9. Wolfgang Glänzel & Balázs Schlemmer & Bart Thijs, 2003. "Better late than never? On the chance to become highly cited only beyond the standard bibliometric time horizon," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 571-586, November.
    10. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    11. Norio Ohba & Kumiko Nakao, 2012. "Sleeping beauties in ophthalmology," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 253-264, November.
    12. Fiala, Dalibor & Šubelj, Lovro & Žitnik, Slavko & Bajec, Marko, 2015. "Do PageRank-based author rankings outperform simple citation counts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 334-348.
    13. Ben Van Calster, 2012. "It takes time: A remarkable example of delayed recognition," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2341-2344, November.
    14. Jiang Li, 2014. "Citation curves of “all-elements-sleeping-beauties”: “flash in the pan” first and then “delayed recognition”," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 595-601, August.
    15. Jiang Li & Dongbo Shi, 2016. "Sleeping beauties in genius work: When were they awakened?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(2), pages 432-440, February.
    16. Philippe Gorry & Pascal Ragouet, 2016. "“Sleeping beauty” and her restless sleep: Charles Dotter and the birth of interventional radiology," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 773-784, May.
    17. James Hartley & Yuh-Shan Ho, 2017. "Who woke the sleeping beauties in psychology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1065-1068, August.
    18. Tibor Braun & Wolfgang Glänzel & András Schubert, 2010. "On Sleeping Beauties, Princes and other tales of citation distributions …," Research Evaluation, Oxford University Press, vol. 19(3), pages 195-202, September.
    19. Anthony F. J. Raan, 2017. "Sleeping beauties cited in patents: Is there also a dormitory of inventions?," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1123-1156, March.
    20. Li, Jiang & Shi, Dongbo & Zhao, Star X. & Ye, Fred Y., 2014. "A study of the “heartbeat spectra” for “sleeping beauties”," Journal of Informetrics, Elsevier, vol. 8(3), pages 493-502.
    21. Yuh-Shan Ho & James Hartley, 2017. "Sleeping beauties in psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 301-305, January.
    22. Jean Gadrey & Faïz Gallouj & Olivier Weinstein, 1995. "New modes of innovation: how services benefit industry," Post-Print halshs-01114102, HAL.
    23. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Du & Yishan Wu, 2018. "A parameter-free index for identifying under-cited sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 959-971, August.
    2. Hui Fang, 2019. "A transition stage co-citation criterion for identifying the awakeners of sleeping beauty publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 307-322, October.
    3. Anthony F. J. van Raan, 2021. "Sleeping beauties gain impact in overdrive mode," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4311-4332, May.
    4. Arash Najmaei & Zahra Sadeghinejad, 2023. "Green and sustainable business models: historical roots, growth trajectory, conceptual architecture and an agenda for future research—A bibliometric review of green and sustainable business models," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 957-999, February.
    5. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    2. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    3. Hui Fang, 2019. "A transition stage co-citation criterion for identifying the awakeners of sleeping beauty publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 307-322, October.
    4. ZhangJian Zong & XuanZhen Liu & Hui Fang, 2018. "Sleeping beauties with no prince based on the co-citation criterion," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1841-1852, December.
    5. Adil El Aichouchi & Philippe Gorry, 2018. "Delayed recognition of Judah Folkman’s hypothesis on tumor angiogenesis: when a Prince awakens a Sleeping Beauty by self-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 385-399, July.
    6. Miura, Takahiro & Asatani, Kimitaka & Sakata, Ichiro, 2023. "Revisiting the uniformity and inconsistency of slow-cited papers in science," Journal of Informetrics, Elsevier, vol. 17(1).
    7. Helena H. Zhang & Fred Y. Ye, 2020. "Identifying ‘associated-sleeping-beauties’ in ‘swan-groups’ based on small qualified datasets of physics and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1525-1537, March.
    8. Aurora A. C. Teixeira & Pedro Cosme Vieira & Ana Patrícia Abreu, 2017. "Sleeping Beauties and their princes in innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 541-580, February.
    9. You Song & Fangling Situ & Hongjun Zhu & Jinzhi Lei, 2018. "To be the Prince to wake up Sleeping Beauty: the rediscovery of the delayed recognition studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 9-24, October.
    10. Sepideh Fahimifar & Elmira Janavi & Fatemeh Fadaei, 2024. "Awakening the beauty: a journey through dormant gems in strategic management literature," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3331-3362, August.
    11. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.
    12. Onodera, Natsuo, 2016. "Properties of an index of citation durability of an article," Journal of Informetrics, Elsevier, vol. 10(4), pages 981-1004.
    13. Ratnadeep Dey & Anurag Roy & Tanmoy Chakraborty & Saptarshi Ghosh, 2017. "Sleeping beauties in Computer Science: characterization and early identification," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1645-1663, December.
    14. Jianhua Hou & Xiucai Yang & Haoyang Song & Haiyue Yao, 2023. "Will patent family be dormant? Research on the identification and characteristics of sleeping beauty’s patent family," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5361-5387, October.
    15. Yuh-Shan Ho & James Hartley, 2017. "Sleeping beauties in psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 301-305, January.
    16. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    17. Min, Chao & Sun, Jianjun & Pei, Lei & Ding, Ying, 2016. "Measuring delayed recognition for papers: Uneven weighted summation and total citations," Journal of Informetrics, Elsevier, vol. 10(4), pages 1153-1165.
    18. Yang, Jinqing & Bu, Yi & Lu, Wei & Huang, Yong & Hu, Jiming & Huang, Shengzhi & Zhang, Li, 2022. "Identifying keyword sleeping beauties: A perspective on the knowledge diffusion process," Journal of Informetrics, Elsevier, vol. 16(1).
    19. Jianhua Hou & Hao Li & Yang Zhang, 2023. "Altmetrics-based sleeping beauties: necessity or just a supplement?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5477-5506, October.
    20. Lachance, Christian & Larivière, Vincent, 2014. "On the citation lifecycle of papers with delayed recognition," Journal of Informetrics, Elsevier, vol. 8(4), pages 863-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2687-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.