IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v114y2018i2d10.1007_s11192-017-2596-3.html
   My bibliography  Save this article

Science map metaphors: a comparison of network versus hexmap-based visualizations

Author

Listed:
  • Katy Börner

    (Indiana University
    Indiana University Network Science Institute
    Indiana University)

  • Adam H. Simpson

    (Indiana University)

  • Andreas Bueckle

    (Indiana University)

  • Robert L. Goldstone

    (Indiana University
    Indiana University)

Abstract

Most maps of science use a network layout; few use a landscape metaphor. Human users are trained in reading geospatial maps, yet most have a hard time reading even simple networks. Prior work using general networks has shown that map-based visualizations increase recall accuracy of data. This paper reports the result of a comparison of two comparable renderings of the UCSD map of science that are: the original network layout and a novel hexmap that uses a landscape metaphor to layout the 554 subdisciplines grouped into 13 color-coded disciplines of science. Overlaid are HITS metrics that show the impact and transformativeness of different scientific subdisciplines. Both maps support the same interactivity, including search, filter, zoom, panning, and details on demand. Users performed memorization, search, and retrieval tasks using both maps. Results did not show any significant differences in how the two maps were remembered or used by participants. We conclude with a discussion of results and planned future work.

Suggested Citation

  • Katy Börner & Adam H. Simpson & Andreas Bueckle & Robert L. Goldstone, 2018. "Science map metaphors: a comparison of network versus hexmap-based visualizations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 409-426, February.
  • Handle: RePEc:spr:scient:v:114:y:2018:i:2:d:10.1007_s11192-017-2596-3
    DOI: 10.1007/s11192-017-2596-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2596-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2596-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack & Katy Börner & Richard Klavans, 2009. "Mapping the structure and evolution of chemistry research," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 45-60, April.
    2. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    3. Scott Emmons & Stephen Kobourov & Mike Gallant & Katy Börner, 2016. "Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Staudt & Huifeng Yu & Robert P Light & Gerald Marschke & Katy Börner & Bruce A Weinberg, 2018. "High-impact and transformative science (HITS) metrics: Definition, exemplification, and comparison," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Coccia, 2020. "The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 451-487, July.
    2. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    3. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    4. Citron, Daniel T. & Way, Samuel F., 2018. "Network assembly of scientific communities of varying size and specificity," Journal of Informetrics, Elsevier, vol. 12(1), pages 181-190.
    5. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    6. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    7. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    9. Perianes-Rodriguez, Antonio & Ruiz-Castillo, Javier, 2017. "A comparison of the Web of Science and publication-level classification systems of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 32-45.
    10. Jimi Adams & Ryan Light, 2014. "Mapping Interdisciplinary Fields: Efficiencies, Gaps and Redundancies in HIV/AIDS Research," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    11. Rosa Rodriguez-Sánchez & J. A. García & J. Fdez-Valdivia, 2014. "Evolutionary games between subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 869-888, October.
    12. Amin Mazloumian, 2012. "Predicting Scholars' Scientific Impact," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-5, November.
    13. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.
    14. Dyhdalewicz Anna & Grześ-Bukłaho Justyna, 2021. "Competences of innovation brokers - experiences of the GoSmart BSR project," Engineering Management in Production and Services, Sciendo, vol. 13(4), pages 95-114, December.
    15. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    16. Wilfred Dolfsma & Loet Leydesdorff, 2010. "The citation field of evolutionary economics," Journal of Evolutionary Economics, Springer, vol. 20(5), pages 645-664, October.
    17. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    18. Shenghui Wang & Rob Koopman, 2017. "Clustering articles based on semantic similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1017-1031, May.
    19. A. Abrizah & A. Noorhidawati & A. N. Zainab, 2015. "LIS journals categorization in the Journal Citation Report: a stated preference study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1083-1099, February.
    20. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "Structural indicators in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 451-460, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:114:y:2018:i:2:d:10.1007_s11192-017-2596-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.