IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v105y2015i2d10.1007_s11192-015-1740-1.html
   My bibliography  Save this article

Mapping the intellectual structure of the Internet of Things (IoT) field (2000–2014): a co-word analysis

Author

Listed:
  • Bei-Ni Yan

    (Anhui University
    Fu Jen Catholic University)

  • Tian-Shyug Lee

    (Fu Jen Catholic University)

  • Tsung-Pei Lee

    (Fu Jen Catholic University)

Abstract

The study utilized co-word analysis to explore papers in the field of Internet of Things to examine the scientific development in the area. The research data were retrieved from the WOS database from the period between 2000 and 2014, which consists of 758 papers. By using co-word analysis, this study found 7 clusters that represent the intellectual structure of IoT, including ‘IoT and Security’, ‘Middleware’, ‘RFID’, ‘Internet’, ‘Cloud computing’, ‘Wireless sensor networks’ and ‘6LoWPAN’. To understand these intellectual structures, this study used a co-occurrence matrix based on Pearson’s correlation coefficient to create a clustering of the words using the hierarchical clustering technique. To visualize these intellectual structures, this study carried out a multidimensional scaling analysis, to which a PROXCAL algorithm was applied.

Suggested Citation

  • Bei-Ni Yan & Tian-Shyug Lee & Tsung-Pei Lee, 2015. "Mapping the intellectual structure of the Internet of Things (IoT) field (2000–2014): a co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1285-1300, November.
  • Handle: RePEc:spr:scient:v:105:y:2015:i:2:d:10.1007_s11192-015-1740-1
    DOI: 10.1007/s11192-015-1740-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1740-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1740-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    2. S. Ravikumar & Ashutosh Agrahari & S. N. Singh, 2015. "Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 929-955, January.
    3. Loet Leydesdorff & Liwen Vaughan, 2006. "Co‐occurrence matrices and their applications in information science: Extending ACA to the Web environment," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(12), pages 1616-1628, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Wendzel & Cédric Lévy-Bencheton & Luca Caviglione, 2020. "Not all areas are equal: analysis of citations in information security research," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 267-286, January.
    2. Delgosha, Mohammad Soltani & Hajiheydari, Nastaran & Talafidaryani, Mojtaba, 2022. "Discovering IoT implications in business and management: A computational thematic analysis," Technovation, Elsevier, vol. 118(C).
    3. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    4. Hao Tan & Yuyue Hao, 2022. "Mapping the Global Evolution and Research Directions of Information Seeking, Sharing and Communication in Disasters: A Bibliometric Study," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    5. Faraji, Omid & Ezadpour, Mostafa & Rahrovi Dastjerdi, Alireza & Dolatzarei, Ehsan, 2022. "Conceptual structure of balanced scorecard research: A co-word analysis," Evaluation and Program Planning, Elsevier, vol. 94(C).
    6. Busra Yiğit & Bünyamin Yasin Çakmak, 2024. "Discovering Psychological Well-Being: A Bibliometric Review," Journal of Happiness Studies, Springer, vol. 25(5), pages 1-24, June.
    7. S. Lozano & L. Calzada-Infante & B. Adenso-Díaz & S. García, 2019. "Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 609-629, August.
    8. Seyedmohammadreza Hosseini & Hamed Baziyad & Rasoul Norouzi & Sheida Jabbedari Khiabani & Győző Gidófalvi & Amir Albadvi & Abbas Alimohammadi & Seyedehsan Seyedabrishami, 2021. "Mapping the intellectual structure of GIS-T field (2008–2019): a dynamic co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2667-2688, April.
    9. Aliakbar Pourhatami & Mohammad Kaviyani-Charati & Bahareh Kargar & Hamed Baziyad & Maryam Kargar & Carlos Olmeda-Gómez, 2021. "Mapping the intellectual structure of the coronavirus field (2000–2020): a co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6625-6657, August.
    10. Arif Mehmood & Gyu Sang Choi & Otto F. Feigenblatt & Han Woo Park, 2016. "Proving ground for social network analysis in the emerging research area “Internet of Things” (IoT)," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 185-201, October.
    11. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    12. Kim, Kun & Park, Oun-joung & Yun, Seunghyun & Yun, Haejung, 2017. "What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 362-369.
    13. Manuel Castriotta & Maria Chiara Guardo, 2016. "Disentangling the automotive technology structure: a patent co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 819-837, May.
    14. Sung Kim & Derek Hansen & Richard Helps, 2018. "Computing research in the academy: insights from theses and dissertations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 135-158, January.
    15. Xiuwen Chen & Jianping Li & Xiaolei Sun & Dengsheng Wu, 2019. "Early identification of intellectual structure based on co-word analysis from research grants," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 349-369, October.
    16. Sujit Bhattacharya & Ravinder Kumar & Shubham Singh, 2020. "Capturing the salient aspects of IoT research: A Social Network Analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 361-384, October.
    17. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    18. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    19. Manuel Castriotta & Michela Loi & Elona Marku & Luca Naitana, 2019. "What’s in a name? Exploring the conceptual structure of emerging organizations," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 407-437, February.
    20. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    21. Qing Yang & Yanxia Zhu & Xingxing Liu & Lingmei Fu & Qianqian Guo, 2019. "Bayesian-Based NIMBY Crisis Transformation Path Discovery for Municipal Solid Waste Incineration in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    22. Lu, Yang & Papagiannidis, Savvas & Alamanos, Eleftherios, 2018. "Internet of Things: A systematic review of the business literature from the user and organisational perspectives," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 285-297.
    23. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Jimi Adams & Ryan Light, 2014. "Mapping Interdisciplinary Fields: Efficiencies, Gaps and Redundancies in HIV/AIDS Research," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    3. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    4. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    5. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.
    6. Koseoglu, Mehmet Ali & Rahimi, Roya & Okumus, Fevzi & Liu, Jingyan, 2016. "Bibliometric studies in tourism," Annals of Tourism Research, Elsevier, vol. 61(C), pages 180-198.
    7. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    8. Leydesdorff, Loet & Wagner, Caroline S., 2008. "International collaboration in science and the formation of a core group," Journal of Informetrics, Elsevier, vol. 2(4), pages 317-325.
    9. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    10. Rongying Zhao & Bikun Chen, 2014. "Applying author co-citation analysis to user interaction analysis: a case study on instant messaging groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 985-997, November.
    11. Manuel Castriotta & Maria Chiara Guardo, 2016. "Disentangling the automotive technology structure: a patent co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 819-837, May.
    12. Seyedmohammadreza Hosseini & Hamed Baziyad & Rasoul Norouzi & Sheida Jabbedari Khiabani & Győző Gidófalvi & Amir Albadvi & Abbas Alimohammadi & Seyedehsan Seyedabrishami, 2021. "Mapping the intellectual structure of GIS-T field (2008–2019): a dynamic co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2667-2688, April.
    13. Yoshiaki Fujita & Michael S. Vitevitch, 2022. "Using network analyses to examine the extent to which and in what ways psychology is multidisciplinary," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    14. Manuel Castriotta & Michela Loi & Elona Marku & Ludovica Moi, 2021. "Disentangling the corporate entrepreneurship construct: conceptualizing through co-words," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2821-2863, April.
    15. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    16. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    17. Takahiro Kawamura & Katsutaro Watanabe & Naoya Matsumoto & Shusaku Egami & Mari Jibu, 2018. "Funding map using paragraph embedding based on semantic diversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 941-958, August.
    18. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    19. Citron, Daniel T. & Way, Samuel F., 2018. "Network assembly of scientific communities of varying size and specificity," Journal of Informetrics, Elsevier, vol. 12(1), pages 181-190.
    20. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:105:y:2015:i:2:d:10.1007_s11192-015-1740-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.