IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i2d10.1007_s13571-021-00269-8.html
   My bibliography  Save this article

Poisson Counts, Square Root Transformation and Small Area Estimation

Author

Listed:
  • Malay Ghosh

    (University of Florida)

  • Tamal Ghosh

    (University of Florida)

  • Masayo Y. Hirose

    (Kyushu University)

Abstract

The paper intends to serve two objectives. First, it revisits the celebrated Fay-Herriot model, but with homoscedastic known error variance. The motivation comes from an analysis of count data, in the present case, COVID-19 fatality for all counties in Florida. The Poisson model seems appropriate here, as is typical for rare events. An empirical Bayes (EB) approach is taken for estimation. However, unlike the conventional conjugate gamma or the log-normal prior for the Poisson mean, here we make a square root transformation of the original Poisson data, along with square root transformation of the corresponding mean. Proper back transformation is used to infer about the original Poisson means. The square root transformation makes the normal approximation of the transformed data more justifiable with added homoscedasticity. We obtain exact analytical formulas for the bias and mean squared error of the proposed EB estimators. In addition to illustrating our method with the COVID-19 example, we also evaluate performance of our procedure with simulated data as well.

Suggested Citation

  • Malay Ghosh & Tamal Ghosh & Masayo Y. Hirose, 2022. "Poisson Counts, Square Root Transformation and Small Area Estimation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 449-471, November.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00269-8
    DOI: 10.1007/s13571-021-00269-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-021-00269-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-021-00269-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Ghosh & T. Kubokawa & Y. Kawakubo, 2015. "Benchmarked empirical Bayes methods in multiplicative area-level models with risk evaluation," Biometrika, Biometrika Trust, vol. 102(3), pages 647-659.
    2. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    3. Yu, Guan, 2009. "Variance stabilizing transformations of Poisson, binomial and negative binomial distributions," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1621-1629, July.
    4. Eric V. Slud & Tapabrata Maiti, 2006. "Mean‐squared error estimation in transformed Fay–Herriot models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 239-257, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    2. Paul Walter & Marcus Groß & Timo Schmid & Nikos Tzavidis, 2021. "Domain prediction with grouped income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1501-1523, October.
    3. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    4. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    5. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    6. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    7. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    8. Molina, Isabel, 2006. "Uncertainty under a multivariate nested-error regression model with logarithmic transformation," DES - Working Papers. Statistics and Econometrics. WS ws066117, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Karlberg Forough, 2015. "Small Area Estimation for Skewed Data in the Presence of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    10. Shonosuke Sugasawa & Tatsuya Kubokawa, 2013. " Parametric Transformed Fay-Herriot Model for Small Area Estimation ," CIRJE F-Series CIRJE-F-911, CIRJE, Faculty of Economics, University of Tokyo.
    11. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    12. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    13. Maria Rosaria Ferrante & Silvia Pacei, 2017. "Small domain estimation of business statistics by using multivariate skew normal models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1057-1088, October.
    14. repec:bla:jorssa:v:180:y:2017:i:4:p:1163-1190 is not listed on IDEAS
    15. Tatsuya Kubokawa, 2010. "On Measuring Uncertainty of Small Area Estimators with Higher Order Accuracy," CIRJE F-Series CIRJE-F-754, CIRJE, Faculty of Economics, University of Tokyo.
    16. Nora Würz & Timo Schmid & Nikos Tzavidis, 2022. "Estimating regional income indicators under transformations and access to limited population auxiliary information," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1679-1706, October.
    17. Stefano Marchetti & Luca Secondi, 2022. "The Economic Perspective of Food Poverty and (In)security: An Analytical Approach to Measuring and Estimation in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(3), pages 995-1020, August.
    18. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    19. Ryan Janicki & Andrew Vesper, 2017. "Benchmarking techniques for reconciling Bayesian small area models at distinct geographic levels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 557-581, November.
    20. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    21. Zhang Junni L. & Bryant John, 2020. "Fully Bayesian Benchmarking of Small Area Estimation Models," Journal of Official Statistics, Sciendo, vol. 36(1), pages 197-223, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00269-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.