IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i1d10.1007_s13571-018-0151-8.html
   My bibliography  Save this article

Solution of Linear Ill-Posed Problems Using Random Dictionaries

Author

Listed:
  • Pawan Gupta

    (University of Central Florida)

  • Marianna Pensky

    (University of Central Florida)

Abstract

In the present paper, we consider an application of overcomplete dictionaries to the solution of general ill-posed linear inverse problems. In the context of regression problems, there has been an enormous amount of effort to recover an unknown function using such dictionaries. One of the most popular methods, lasso, and its versions, is based on minimizing the empirical likelihood and unfortunately, requires stringent assumptions on the dictionary, the so-called, compatibility conditions. Though compatibility conditions are hard to satisfy, it is well known that this can be accomplished by using random dictionaries. In the present paper, we show how one can apply random dictionaries to the solution of ill-posed linear inverse problems. We put a theoretical foundation under the suggested methodology and study its performance via simulations and real-data example.

Suggested Citation

  • Pawan Gupta & Marianna Pensky, 2018. "Solution of Linear Ill-Posed Problems Using Random Dictionaries," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 178-193, May.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-018-0151-8
    DOI: 10.1007/s13571-018-0151-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0151-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0151-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Albert & Hoffmann, Marc & Reiß, Markus, 2002. "Adaptive wavelet Galerkin methods for linear inverse problems," SFB 373 Discussion Papers 2002,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Arnak S. Dalalyan & Mohamed Hebiri & Johannes Lederer, 2014. "On the Prediction Performance of the Lasso," Working Papers 2014-05, Center for Research in Economics and Statistics.
    3. Fabienne Comte & Charles-A. Cuenod & Marianna Pensky & Yves Rozenholc, 2017. "Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 69-94, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Comte & V. Genon-Catalot, 2020. "Regression function estimation as a partly inverse problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1023-1054, August.
    2. Xiaohong Chen & Demian Pouzo, 2008. "Estimation of nonparametric conditional moment models with possibly nonsmooth moments," CeMMAP working papers CWP12/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Sheng Xu & Zhou Fan, 2021. "Iterative Alpha Expansion for estimating gradient‐sparse signals from linear measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 271-292, April.
    4. Comte, Fabienne & Genon-Catalot, Valentine, 2021. "Drift estimation on non compact support for diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 174-207.
    5. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    6. Pierre Bellec & Alexandre Tsybakov, 2015. "Sharp oracle bounds for monotone and convex regression through aggregation," Working Papers 2015-04, Center for Research in Economics and Statistics.
    7. Marteau Clement & Loubes Jean-Michel, 2012. "Adaptive estimation for an inverse regression model with unknown operator," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 215-242, August.
    8. Gwennaëlle Mabon, 2017. "Adaptive Deconvolution on the Non-negative Real Line," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 707-740, September.
    9. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression," Cowles Foundation Discussion Papers 1923, Cowles Foundation for Research in Economics, Yale University.
    10. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    11. Wanling Xie & Hu Yang, 2023. "Group sparse recovery via group square-root elastic net and the iterative multivariate thresholding-based algorithm," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 469-507, September.
    12. Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
    13. Belloni, Alexandre & Chen, Mingli & Madrid Padilla, Oscar Hernan & Wang, Zixuan (Kevin), 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," The Warwick Economics Research Paper Series (TWERPS) 1230, University of Warwick, Department of Economics.
    14. Tung Duy Luu & Jalal Fadili & Christophe Chesneau, 2020. "Sharp oracle inequalities for low-complexity priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 353-397, April.
    15. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    16. Jacob Bien & Irina Gaynanova & Johannes Lederer & Christian L. Müller, 2019. "Prediction error bounds for linear regression with the TREX," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 451-474, June.
    17. Anne Vanhems & Jean-Michel Loubes, 2004. "Saturation spaces for regularization methods in inverse problems," Econometric Society 2004 North American Summer Meetings 380, Econometric Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-018-0151-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.