IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v80y2018i1d10.1007_s13171-017-0099-1.html
   My bibliography  Save this article

Multivariate Order Statistics: the Intermediate Case

Author

Listed:
  • Michael Falk

    (University of Würzburg)

  • Florian Wisheckel

    (University of Würzburg)

Abstract

Asymptotic normality of intermediate order statistics taken from univariate iid random variables is well-known. We generalize this result to random vectors in arbitrary dimension, where the order statistics are taken componentwise.

Suggested Citation

  • Michael Falk & Florian Wisheckel, 2018. "Multivariate Order Statistics: the Intermediate Case," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 110-120, February.
  • Handle: RePEc:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-017-0099-1
    DOI: 10.1007/s13171-017-0099-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-017-0099-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-017-0099-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Barakat, 2001. "The Asymptotic Distribution Theory of Bivariate Order Statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 487-497, September.
    2. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    3. Michael Falk, 1989. "A note on uniform asymptotic normality of intermediate order statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(1), pages 19-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017. "Measuring firm performance using nonparametric quantile-type distances," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
    2. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    3. Jaworski Piotr, 2017. "On Conditional Value at Risk (CoVaR) for tail-dependent copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 1-19, January.
    4. Jeguirim, Khaled & Ben Salem, Leila, 2024. "Unveiling extreme dependencies between oil price shocks and inflation in Tunisia: Insights from a copula dcc garch approach," MPRA Paper 121616, University Library of Munich, Germany.
    5. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    7. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    8. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    9. Jaworski Piotr, 2023. "On copulas with a trapezoid support," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-23, January.
    10. MICHIELS, Frederik & KOCH, Inge & DE SCHEPPR, Ann, 2008. "Exploring the ? copula construction method for Archimedean copulas: Discussion of three ? types," Working Papers 2008021, University of Antwerp, Faculty of Business and Economics.
    11. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    12. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    13. Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
    14. V'eronique Maume-Deschamps & Didier Rulli`ere & Khalil Said, 2017. "Asymptotic multivariate expectiles," Papers 1704.07152, arXiv.org, revised Jan 2018.
    15. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    16. Diakarya Barro & Moumouni Diallo & Remi Guillaume Bagré, 2016. "Spatial Tail Dependence and Survival Stability in a Class of Archimedean Copulas," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-8, July.
    17. Maume-Deschamps Véronique & Rullière Didier & Said Khalil, 2018. "Extremes for multivariate expectiles," Statistics & Risk Modeling, De Gruyter, vol. 35(3-4), pages 111-140, July.
    18. H. M. Barakat, 2019. "A Family of Waiting time Distributions Arising from a Bivariate Bernoulli Scheme," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(1), pages 213-224, March.
    19. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
    20. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:80:y:2018:i:1:d:10.1007_s13171-017-0099-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.