IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v98y2021i3d10.1007_s11134-020-09661-z.html
   My bibliography  Save this article

Maximum on a random time interval of a random walk with infinite mean

Author

Listed:
  • Denis Denisov

    (University of Manchester)

Abstract

Let $$\xi _1,\xi _2,\ldots $$ ξ 1 , ξ 2 , … be independent, identically distributed random variables with infinite mean $${\mathbf {E}}[|\xi _1|]=\infty .$$ E [ | ξ 1 | ] = ∞ . Consider a random walk $$S_n=\xi _1+\cdots +\xi _n$$ S n = ξ 1 + ⋯ + ξ n , a stopping time $$\tau =\min \{n\ge 1: S_n\le 0\}$$ τ = min { n ≥ 1 : S n ≤ 0 } and let $$M_\tau =\max _{0\le i\le \tau } S_i$$ M τ = max 0 ≤ i ≤ τ S i . We study the asymptotics for $${\mathbf {P}}(M_\tau >x),$$ P ( M τ > x ) , as $$x\rightarrow \infty $$ x → ∞ .

Suggested Citation

  • Denis Denisov, 2021. "Maximum on a random time interval of a random walk with infinite mean," Queueing Systems: Theory and Applications, Springer, vol. 98(3), pages 211-223, August.
  • Handle: RePEc:spr:queues:v:98:y:2021:i:3:d:10.1007_s11134-020-09661-z
    DOI: 10.1007/s11134-020-09661-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-020-09661-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-020-09661-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmussen, Søren & Kalashnikov, Vladimir & Konstantinides, Dimitrios & Klüppelberg, Claudia & Tsitsiashvili, Gurami, 2002. "A local limit theorem for random walk maxima with heavy tails," Statistics & Probability Letters, Elsevier, vol. 56(4), pages 399-404, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuebao & Yang, Yang & Wang, Kaiyong & Cheng, Dongya, 2007. "Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 256-266, March.
    2. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    3. Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
    4. Jiang, Tao & Wang, Yuebao & Cui, Zhaolei & Chen, Yuxin, 2019. "On the almost decrease of a subexponential density," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 71-79.
    5. Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
    6. Yuebao Wang & Hui Xu & Dongya Cheng & Changjun Yu, 2018. "The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands," Statistical Papers, Springer, vol. 59(1), pages 99-126, March.
    7. Barbe, Ph. & McCormick, W.P. & Zhang, C., 2007. "Tail expansions for the distribution of the maximum of a random walk with negative drift and regularly varying increments," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1835-1847, December.
    8. Gao, Qingwu & Wang, Yuebao, 2009. "Ruin probability and local ruin probability in the random multi-delayed renewal risk model," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 588-596, March.
    9. Hansen, Niels Richard & Jensen, Anders Tolver, 2005. "The extremal behaviour over regenerative cycles for Markov additive processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 579-591, April.
    10. Predrag R. Jelenković & Petar Momčilović, 2004. "Large Deviations of Square Root Insensitive Random Sums," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 398-406, May.
    11. Geluk, J.L. & Frenk, J.B.G., 2011. "Renewal theory for random variables with a heavy tailed distribution and finite variance," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 77-82, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:98:y:2021:i:3:d:10.1007_s11134-020-09661-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.