IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v90y2018i3d10.1007_s11134-018-9583-0.html
   My bibliography  Save this article

On a multivariate renewal-reward process involving time delays and discounting: applications to IBNR processes and infinite server queues

Author

Listed:
  • Landy Rabehasaina

    (University Bourgogne Franche Comté)

  • Jae-Kyung Woo

    (University of New South Wales)

Abstract

This paper considers a particular renewal-reward process with multivariate discounted rewards (inputs) where the arrival epochs are adjusted by adding some random delays. Then, this accumulated reward can be regarded as multivariate discounted Incurred But Not Reported claims in actuarial science and some important quantities studied in queueing theory such as the number of customers in $$G/G/\infty $$ G / G / ∞ queues with correlated batch arrivals. We study the long-term behaviour of this process as well as its moments. Asymptotic expressions and bounds for quantities of interest, and also convergence for the distribution of this process after renormalization, are studied, when interarrival times and time delays are light tailed. Next, assuming exponentially distributed delays, we derive some explicit and numerically feasible expressions for the limiting joint moments. In such a case, for an infinite server queue with a renewal arrival process, we obtain limiting results on the expectation of the workload, and the covariance of queue size and workload. Finally, some queueing theoretic applications are provided.

Suggested Citation

  • Landy Rabehasaina & Jae-Kyung Woo, 2018. "On a multivariate renewal-reward process involving time delays and discounting: applications to IBNR processes and infinite server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 307-350, December.
  • Handle: RePEc:spr:queues:v:90:y:2018:i:3:d:10.1007_s11134-018-9583-0
    DOI: 10.1007/s11134-018-9583-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-018-9583-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-018-9583-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woo, Jae-Kyung, 2016. "On multivariate discounted compound renewal sums with time-dependent claims in the presence of reporting/payment delays," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 354-363.
    2. Patch, Brendan & Nazarathy, Yoni & Taimre, Thomas, 2015. "A correction term for the covariance of renewal-reward processes with multivariate rewards," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 1-7.
    3. Aliyev, Rovshan & Bayramov, Veli, 2017. "On the asymptotic behaviour of the covariance function of the rewards of a multivariate renewal–reward process," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 138-149.
    4. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    5. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    6. Woollcott Smith, 1972. "Technical Note—The Infinitely-Many-Server Queue with Semi-Markovian Arrivals and Customer-Dependent Exponential Service Times," Operations Research, INFORMS, vol. 20(4), pages 907-912, August.
    7. Losidis, Sotirios & Politis, Konstadinos, 2017. "A two-sided bound for the renewal function when the interarrival distribution is IMRL," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 164-170.
    8. Brown, Mark & Solomon, Herbert, 1975. "A second-order approximation for the variance of a renewal reward process," Stochastic Processes and their Applications, Elsevier, vol. 3(3), pages 301-314, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharifah Farah Syed Yusoff Alhabshi & Zamira Hasanah Zamzuri & Siti Norafidah Mohd Ramli, 2021. "Monte Carlo Simulation of the Moments of a Copula-Dependent Risk Process with Weibull Interwaiting Time," Risks, MDPI, vol. 9(6), pages 1-21, June.
    2. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    3. Woo, Jae-Kyung, 2016. "On multivariate discounted compound renewal sums with time-dependent claims in the presence of reporting/payment delays," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 354-363.
    4. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    5. Aliyev, Rovshan & Bayramov, Veli, 2017. "On the asymptotic behaviour of the covariance function of the rewards of a multivariate renewal–reward process," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 138-149.
    6. Siti Norafidah Mohd Ramli & Jiwook Jang, 2014. "Neumann Series on the Recursive Moments of Copula-Dependent Aggregate Discounted Claims," Risks, MDPI, vol. 2(2), pages 1-16, May.
    7. Landriault, David & Willmot, Gordon E. & Xu, Di, 2014. "On the analysis of time dependent claims in a class of birth process claim count models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 168-173.
    8. Khaniyev, T. & Kesemen, T. & Aliyev, R. & Kokangul, A., 2008. "Asymptotic expansions for the moments of a semi-Markovian random walk with exponential distributed interference of chance," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 785-793, April.
    9. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    10. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    11. Patch, Brendan & Nazarathy, Yoni & Taimre, Thomas, 2015. "A correction term for the covariance of renewal-reward processes with multivariate rewards," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 1-7.
    12. Chadjiconstantinidis, Stathis, 2023. "Some bounds for the renewal function and the variance of the renewal process," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    13. Sotirios Losidis & Konstadinos Politis & Georgios Psarrakos, 2021. "Exact Results and Bounds for the Joint Tail and Moments of the Recurrence Times in a Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1489-1505, December.
    14. Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
    15. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    16. Hautphenne, Sophie & Kerner, Yoav & Nazarathy, Yoni & Taylor, Peter, 2015. "The intercept term of the asymptotic variance curve for some queueing output processes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 455-464.
    17. Shuanming Li & Yi Lu, 2018. "On the Moments and the Distribution of Aggregate Discounted Claims in a Markovian Environment," Risks, MDPI, vol. 6(2), pages 1-16, May.
    18. Marri, Fouad & Furman, Edward, 2012. "Pricing compound Poisson processes with the Farlie–Gumbel–Morgenstern dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 151-157.
    19. Pekalp, Mustafa Hilmi, 2022. "Some new bounds for the mean value function of the residual lifetime process," Statistics & Probability Letters, Elsevier, vol. 187(C).
    20. Ya Fang Wang & José Garrido & Ghislain Léveillé, 2018. "The Distribution of Discounted Compound PH–Renewal Processes," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 69-96, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:90:y:2018:i:3:d:10.1007_s11134-018-9583-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.