IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v55y2021i1d10.1007_s11135-020-01000-x.html
   My bibliography  Save this article

A semantic network approach to measuring sentiment

Author

Listed:
  • James A. Danowski

    (University of Illinois at Chicago)

  • Bei Yan

    (University of California, Santa Barbara)

  • Ken Riopelle

    (Wayne State University)

Abstract

Sentiment research is dominated by studies that assign texts to positive and negative categories. This classification is often based on a bag-of-words approach that counts the frequencies of sentiment terms from a predefined vocabulary, ignoring the contexts for these words. We test an aspect-based network analysis model that computes sentiment about an entity from the shortest paths between the sentiment words and the target word across a corpus. Two ground-truth datasets in which human annotators judged whether tweets were positive or negative enabled testing the internal and external validity of the automated network-based method, evaluating the extent to which this approach’s scoring corresponds to the annotations. We found that tweets annotated as negative had an automated negativity score that was nearly twice as strong than positivity, while positively annotated tweets were six times stronger in positivity than negativity. To assess the predictive validity of the approach, we analyzed sentiment associated with coronavirus coverage in television news from January 1 to March 25, 2020. Support was found for the four hypotheses tested, demonstrating the utility of the approach. H1: broadcast news expresses less sentiment about coronavirus, panic, and social distancing than non-broadcast news outlets. H2: there is a negative bias in the news across channels. H3: sentiment increases are associated with an increased volume of news stories. H4: sentiment is associated with uncertainty in news coverage of coronavirus over time. We also found that as the type of channel moved from broadcast network news to 24-h business, general, and foreign news sentiment increased for coronavirus, panic, and social distancing.

Suggested Citation

  • James A. Danowski & Bei Yan & Ken Riopelle, 2021. "A semantic network approach to measuring sentiment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 221-255, February.
  • Handle: RePEc:spr:qualqt:v:55:y:2021:i:1:d:10.1007_s11135-020-01000-x
    DOI: 10.1007/s11135-020-01000-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-020-01000-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-020-01000-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James A. Danowski & Kenneth Riopelle, 2019. "Scaling constructs with semantic networks," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2671-2683, September.
    2. Bruce Golden, 1976. "Technical Note—Shortest-Path Algorithms: A Comparison," Operations Research, INFORMS, vol. 24(6), pages 1164-1168, December.
    3. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin H C Cheng, 2022. "The Ontology of Work during Pandemic Lockdown: A Semantic Network Analytical Approach," Merits, MDPI, vol. 2(4), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    2. Umar, Tarik, 2022. "Complexity aversion when SeekingAlpha," Journal of Accounting and Economics, Elsevier, vol. 73(2).
    3. Drago, Carlo & Ginesti, Gianluca & Pongelli, Claudia & Sciascia, Salvatore, 2018. "Reporting strategies: What makes family firms beat around the bush? Family-related antecedents of annual report readability," Journal of Family Business Strategy, Elsevier, vol. 9(2), pages 142-150.
    4. Rybinski, Krzysztof, 2020. "The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation," Finance Research Letters, Elsevier, vol. 34(C).
    5. Rolf Uwe Fülbier & Thorsten Sellhorn, 2023. "Understanding and improving the language of business: How accounting and corporate reporting research can better serve business and society," Journal of Business Economics, Springer, vol. 93(6), pages 1089-1124, August.
    6. Chris Florakis & Christodoulos Louca & Roni Michaely & Michael Weber, 2020. "Cybersecurity Risk," Working Papers 2020-178, Becker Friedman Institute for Research In Economics.
    7. Liu, Pu & Nguyen, Hazel T., 2020. "CEO characteristics and tone at the top inconsistency," Journal of Economics and Business, Elsevier, vol. 108(C).
    8. Kladakis, George & Chen, Lei & Bellos, Sotirios K., 2023. "Ethical bank disclosures and liquidity creation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    9. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    10. Leilane de Freitas Rocha Cambara & Roberto Meurer, 2023. "News sentiment and foreign portfolio investment in Brazil," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3332-3348, July.
    11. Tarek A Hassan & Stephan Hollander & Laurence van Lent & Ahmed Tahoun, 2019. "Firm-Level Political Risk: Measurement and Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 2135-2202.
    12. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Mar 2023.
    13. Gao, Lei & Calderon, Thomas G. & Tang, Fengchun, 2020. "Public companies' cybersecurity risk disclosures," International Journal of Accounting Information Systems, Elsevier, vol. 38(C).
    14. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).
    15. Md Miran Hossain & Babak Mammadov & Hamid Vakilzadeh, 2022. "Wisdom of the crowd and stock price crash risk: evidence from social media," Review of Quantitative Finance and Accounting, Springer, vol. 58(2), pages 709-742, February.
    16. Minxing Sun & Weike Xu, 2024. "Short selling and readability in financial disclosures: A controlled experiment," The Financial Review, Eastern Finance Association, vol. 59(2), pages 265-292, May.
    17. John M. Barrios, 2022. "Occupational Licensing and Accountant Quality: Evidence from the 150‐Hour Rule," Journal of Accounting Research, Wiley Blackwell, vol. 60(1), pages 3-43, March.
    18. Muhammad Farhan Malik & Yuan George Shan & Jamie Yixing Tong, 2022. "Do auditors price litigious tone?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1715-1760, April.
    19. Jana P. Fidrmuc & Tereza Tykvova, 2023. "Are Acquirer Shareholders Happier when Their Industries Are Unhappy?," Swiss Finance Institute Research Paper Series 23-52, Swiss Finance Institute.
    20. Ostapenko, Nataliia, 2020. "Central Bank Communication: Information and Policy shocks," MPRA Paper 101278, University Library of Munich, Germany, revised 21 Jun 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:55:y:2021:i:1:d:10.1007_s11135-020-01000-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.